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Abstract

The input data for DNA computing must be encoded into the form of single or double DNA
strands. As complementary parts of single strands can bind together forming a double-stranded DNA
sequence, one has to impose restrictions on these sets of DNA words (languages) to prevent them
from interacting in undesirable ways. We recall a list of known properties of DNA languages which
are free of certain types of undesirable bonds. Then we introduce a general framework in which we
can characterize each of these properties by a solution of a uniform formal language inequation. This
characterization allows us among others to construct (i) a uniform algorithm deciding in polynomial
time whether a given DNA language possesses any of the studied properties, and (ii) in many cases
also an algorithm deciding whether a given DNA language is maximal with respect to the desired
property.
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1. Introduction

The main principle of DNA computing (or, more generally, molecular computing), can
be summarized as follows: given a problém I — O, with an input from a sdtand an
output from a se©, we design an encoding of the input (respectively output) into a starting
set (respectively final set) of bio-molecules. Then there must be a set of possible reactions
such that for a given input set of molecules, these reactions produce a correct final set with
respect to the used encoding. One must be able to construct the input set of molecules for
a given inputi € 7, then to ensure conditions for the desired reactions to run, and finally
to detect the (non)presence of the final set of molecules in the reaction products. Unlike
conventional computers, molecular computing devices would work in a maxipeiijiel
manner, and an input (a set of molecules) of an elementary computing step (i.e. reaction)
would beconsumediuring the reaction, producing a set of output molecules.

The most important molecules in DNA computing techniques are the single- and double-
strandeddeoxyribonucleic acidDNA) molecules. They are composed primarily raf-
cleotidesA, C, G, T attached to a sugar-phosphate backbone. The single-stranded DNA
molecule can be represented as a linear oriented sequence of these nucleotides. Orientation
is defined by convention from the Bnd to the 8end of the strand. Two single stranded
oppositely oriented DNA molecules can bind together under favorable conditions due to
the Watson—Crick complementarity principl& is complementary td andC to G. Con-
versely, the double-stranded DNA molecule can be broken apart into two complementary
single-stranded components. These two operations, dajlleddization(annealing and
denaturation(melting, are fundamental techniques of DNA computing. There are also
other bio-operations useful in DNA computing context, and we refer the read22@)
for further information (Fig. 1).

Given this framework, [18] and others distinguish two elementary subproblems of the
encoding design:

e Positive design problenwe design a set of input molecules such that there exists a way
for the sequence of reactions to produce the correct final set.
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Fig. 1. A segment of the deoxyribonucleic acid. (a) Sugar-phosphate backbone. (b) Nucleotide base pairs.
(c) Nucleotide bonds. (d) Watson—Crick complementarity principle (e) Codons—triples of nucleotides.
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e Negative design problenthe input set of molecules must not give way to the reac-
tions that produce undesired molecules encoding a false output, and/or to consume
the molecules in undesired reactions so that the correct final set cannot be
produced.

The positive design problem is usually highly related to the specific experiment or
computation at hand, and it is reported to be hard to find a general framework for its
solution. In contrast, the negative design problem can be solved on a general basis by
construction of a library of molecules which do not allow undesired mutual reactions.
These conclusions have been adopted by DNA computing researchers and there is a sig-
nificant number of papers devoted to either positive or negative DNA encoding design
problem. We refer the reader e.g.[q5,7-9,12,14,17] for studies of properties of such
a library and for methods of its construction. There are also many subtler questions con-
cerning the design problems. Various strengths of hybridization bonds due to the DNA
primary and secondary structure, free energy, melting temperature and other factors are
addressed in the literature. General information and further references can be found
e.g.in [2,20].

In this paper we focus on the problem of negative design of sets of DNA code-
words (i.e. DNA languages) which cannot produce undesirable mutual bonds. In Section
2, we give necessary formal language prerequisites and a list of 13 useful properties of
DNA languages studied by various authors. Section 3 gives insight into binary
word operations on trajectories which are extensively used in the remainder of the
paper.

In Section 4, we introduce the key concept of tlomd-free language propertgnd show
that eight of the previously studied properties are its special cases. Moreover, the bond-free
property has an intuitive geometrical interpretation and favorable mathematical features.
In particular, one can construct a general quadratic-time algorithm deciding whether a
given regular set of codewords satisfies any of the mentioned special cases of the bond-free
property. We note that by the terabgorithm we always mean deterministicprocedure,
even if its input might be a non-deterministic formal automaton.

We then observe that the bond-free property is definable via language inequations. By
utilizing and improving recent results in [13] on language inequations, we show in Section
5 that for six instances of the bond-free propertyriraximalityproblem is decidable. This
means that there is an algorithm to decide whether or not a given regular set of codewords
can be further extended without the loss of the property or not. For the case of finite sets
we construct a polynomial-time algorithm deciding the maximality of #heompliant
property. Finally, if an extension is possible, we give formulas characterizing an extended
set of codewords.

The same problems are addressed in Sections 6 and 7 for the soatatidg bond-
free properties which have the added feature of excluding also exact matching pairs of
complementary codewords. This time we show that nine of the properties reported in the
literature fit into our general framework, with the same benefits as in the “non-strict” case.
For eight instances of them we are able to decide also the maximality of regular sets
of codewords, while fol¥-non-overlapping property we can achieve this in polynomial
time. The corresponding formulas for obtaining an extended set of codewords are also
given.
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2. Undesired bonds in DNA languages

Two types of unwanted hybridization are usually considensttamolecular (within
a molecule) andntermolecular (between two or more molecules). The intramolecular
hybridization happens when two mutually complementary sequences appearing in the same
DNA strand bind together forming a hairpin, see Ri@). Intermolecular hybridization may,
for example, involve two complementary sequences which are parts of two different strands
(b), or one of them is a portion of concatenation of two strands (c).

In the remainder of this paper we represent the single-stranded DNA molecules by strings
over theDNA alphabetd = {A, C, T, G}, and we reduce their mutual reactions to formal
manipulation of these strings. Therefore, some formal language prerequisites are necessary.

An alphabetis a finite and non-empty set of symbols. In the sequel we shall use a fixed
non-singleton alphabetl, as a generalization of the natural DNA alphabet

The set of all words ovek is denoted by>*. This set includes thempty word/.. The
length of a wordw is denoted byw|. |w|, denotes the number of occurrencex@fithin
u,forw e X*, x € T, For a non-negative integarand a wordw, we usew” to denote the
word that consists afi concatenated copies af. We denote the mirror image of the word
w by wR. A word v is asubwordof w if w = xvy for some wordx andy. In this case, if
|x| + |y| > O thenv is aproper subword By Sub{w) we denote the set of all subwords of
w. For a positive integet, we use Sup(w) to denote the set of subwords of lengtof w.

For prefixes we use analogously the notation Reg¢fand Pref (w), respectively.

A languagel is a set of words, or equivalently a subset8f A language is said to be
A-free if it does not contain the empty word.rlfs a non-negative integer, we writ¢' for
the language consisting of all words of the fomn - - - w,, such that eacly; is in L. We
also writeL* for the language.® U LY U L? U - - ., andL™ for the languagd.* — {A}. The
notationL¢ represents the complement of the langulagéat is,L¢ = 2* — L. The mirror
image ofL is L® = {w® |w € L}. By Sul(L) we denote the set of all subwordsifi.e.,
Sub(L) = UJ,,c; Sub(w).

Amappingx : 2* — X*is called anorphism(anti-morphismof 2* if a:(uv) = a(u)a(v)
(respectivelyr(uv) = a(v)a(u)) for all u, v € 2*. Note that both a morphism and an anti-
morphism of2* are completely defined if we define their values on the lettess of

Aninvolution0 : 2 — X of 2 is a mapping such that is equal to the identity mapping,
i.e.,0(0(x)) = x forall x € 2. It follows then that an involutiof is bijective and) = 0L,

The identity mapping is a trivial example of an involution. In generaf, if ¥ — X is an
involution, thenX can be partitioned intd = ITU IT' U I’ where cardll) = card/I’) and,
for everya € II we havef(a) =d', f(a’) =a,a’ € IT', while f(b) = b forallb e I. If
IT = IT' = ¢ thenf is the identity onX, while if I' = ¢ f is a sort of complement function
on X2 which maps every element éf into an element of’ and vice versa.

(@) (b) (©

Fig. 2. Types of undesired (a) intramolecular and (b), (c) intermolecular hybridizations.
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An involution of 2 can be extended to either a morphism or an antimorphis@*of
For example, if the identity oF is extended to a morphism a&f, we obtain the identity
involution of X*. However, if we extend the identity &f to an antimorphism o™ we
obtain instead the mirror-image involution bf that maps each womdinto u® where

u=aaz...da, uR =ay...aza1,a; € 2, 1<i <k.

If we consider the DNA-alphabet, then the mapping : 4 — 4 defined byz(A) =
T,7(T) = A,1(C) = G, 1(G) = C can be extended in the usual way to an antimorphism
of A* that is also an involution off*. This involution formalizes the notion of Watson—
Crick complement of a DNA sequence and will therefore be calledNA involution
[12]. By convention, a wordv = aiaz...a, in A* will signify the DNA single strand
5 —ajay...a,—3.Thensingle strands;, wy € 4™ are complementary iffo; = t(w>).

Now we are ready to give a list of desirable properties of a DNA langliageX ™ which
have been defined in [7,12,14].
(A) O-non-overlapping: L N O(L) = @.

(B) O-compliant: Yw € L, x,y € 2%, w,x0(w)y € L = xy = /.

(C) B-p-compliant: Vw € L, y € 2*, w,0(w)y e L = y = A.

(D) O-scompliant: Yw € L, y € 2*, w,y0(w) e L = y = A.

(E) strictly 0-compliant: both 0-compliant and)-non-overlapping.

(F) O-free: L2 N ZTO(L)Zt = 0.

(G) 0-sticky-free: Vw € X, x,y € 2*, wx, y0(w) € L = xy = A.

(H) 0-3-overhang-free Vw € X7, x,y € 2*, wx,O(w)y € L = xy = /.
() 0-5-overhang-free Vw € X, x,y € 2*, xw, y0(w) € L = xy = A.

(J) 0-overhang-free both 0-3'-overhang-free ané-5'-overhang-free.

For convenience, we agree to say that a langlagentaining the empty word has one
of the above properties if \ {1} has that property. Observe that (F) avoids situations like
Fig. 2(c), while other properties exclude special cases of (b).

In [9], a 6-non-overlapping language is called to &teictly 6. Generally, if any other
property holds in conjunction with (A), we add the qualifigrictly. We have already used
this notation for the property (E). Bo#trict andnon-strictproperties turn out to be useful
in certain situations.

For example, it might be useful to find out whether or not a langlagas a non-strict
property in a situation such as follows. The usual way to check for the presence of a certain
single-stranded molecule is to add to the solution the complement of it and use enzymes
to destroy any molecules which are not double stranded (possibly with blunt ends). Let
the solution be non-strictly bond-free (exact matches are allowed). Then, the presence of a
molecule indicates a perfect hybridization, hence the presence of the desired molecule.

Further properties have been defined in [9] for a languag@bserve that the property
(K) avoids bonds like those in Fig. 2(a):

(K) 0 (k, m1, m2)-subword compliant. Yu € X*, *uX"0w)X* N L = ¢ for k > 0,
mi<m<mo.
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6-p-compliant

0-s-compliant

Fig. 3. Classes of languages satisfying various DNA language properties.

(L) 0-k-code Suh.(L) N Suk.(O(L)) =@,k > 0.
The following property is defined fdt = I, the identity relation, ifi5]. A languagel is
called
(M) solidif:
(1) Vx,y,u € X*, u,xuy € L = xy = 4, and
(2) Vx,yeX*uet, xu,uye L = xy =,
L is solid relative to anM < X* if (1) and (2) above hold only fow = pxuyq € M. L is
calledcomma-freéf it is solid relative toL*. Solid languages are also usedid] as a tool
for constructing error-detecting DNA languages that are invariant under bio-operations.
Fig. 3 shows the hierarchy of some of the above language properties. Arrows stand for
inclusion relations among language classes corresponding to the properties.

Example 2.1. Consider the language = {A"T" |n>1} C A%, and the antimorphism

Observe that(L) = L. We can deduce théatis

e neitherz-non-overlapping, not-k-code for anyk > 1;

e nott-compliant, as fow = A"T",x = A, y = T we havew, xt(w)y € L;

e t-p-compliant, asw, O(w)y € L impliesw = A"T", y = 1; similarly, L is t-s
compliant;

e nott-free, asA”"T"A™T™ n,m > 1, is both inL2 and inATLA™";

e notz-sticky-free, as fow = y = A" x = T" we havewx, yt(w) € L;

e 1-3-overhang-free, agx, t(w)y € L impliesw = A"T", x = T"™™,y =T"""and
hencexy = /; similarly, L is t-5'-overhang-free and heneeoverhang-free;

e not0(k, my, mp)-subword compliant for any, m1, mo.
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Besides the inclusion relations in FBy.there are further relations among DNA languages
which are free of various types of (a), (b) or (¢) bonds. The following results are shown in
[9,14] or follow easily by the definitions (assume thiag L < XT).

(i) Let 0 be a morphism. Theh satisfies any of the properties (A)—(M) L) does

Ss0.

(i) Let 0 be an antimorphism. Thensatisfies any of the properties (A), (B), (E)-(G),
(J)—(L) iff O(L) does so. Moreovek,satisfies (C) iffd(L) satisfieg D), and similarly
for (H) and (1).

(i) Denote byL, (Ly) the set of all proper non-empty prefixes (suffixes, respectively)
of L. L is 0-sticky-free iff L, N 0(Ly;) = ¥ andL is both0-p-compliant and)-s-
compliant.

(iv) Let 0 be a morphisml,. be 0-compliant and)-sticky-free. TherL is 0-free.

(v) Let 6 be an antimorphismi, be #-compliant and eithef-3'-overhang-free o6-5'-
overhang-free. Theh is 0-free.

(vi) If Lis O-free, then it ish-compliant.

(vii) If LisstrictlyfandL?is0(k, 1, m)-subword-compliant for ath > 1, therL is strictly
0-k-code.

(viii) If L is 6-k-code then it ig)(k, 1, m)-subword-compliant for altz > 1. Furthermore,
if k<|x|/2forallx € L thenL is 0-free.

3. Binary word operations

Binary word operations are extensively used in the following sections as an important
tool for representing interaction of DNA moleculesbary word operatioris a mapping
O X x X — 227 where 27 is the set of all subsets df*. Hence the result of the
operation<> with operands:, v € X* is generally a languagé:<>v) € X*. In some
important particular cases we have cqard>v) = 1 foru, v € X*. If there is no risk of
misunderstanding, we may then assumev = w, w € X*, instead of the singleton
languaggw} € X*. A typical example is the catenation operationv.

We extend binary operations to any languagesdY as follows:

XoYy= U udv. (1)

ueX,veY

Definition 3.1 (Kari [11]). Let<> be an operation. The left invergeé and the right inverse
& of & are defined as

w e (x$v) iff x € (wolv), forallv, x, w e 27,

we Sy iff ye " w), forallu, y,w e 2*.

Let <> be a binary word operation. The word operatiphdefined byu <’ v = v<u is
called reversegb. Below we list a few binary word operations needed in the following text
[10,13,19].

Catenation u - v = {uv}, with ! = —gand" = —q.
Left quotient u —q v = {w} if u = vw, with —>fq =/ and—>|’q = -
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Right quotient u —q v = {w} if ¥ = wv, with _)qu = -and—,
Insertion u <— v = {urvuz | u = uquo}, with «—! = — and«—" = =/,
Deletion u —> v = {uiuz | u = uivuz}, with —! = «— and—" = =.
Dipolar deletion u = v = {w | u = viwva, v = v1vp}, With =/ = «—" and=" = —.
Shuffle(or scattered insertion u Liiv = {ugvy -« -ugvgipa1 | k=L u = u-- - upigs,
v=v1--- v}, With ! = ~» andl’ = ~'.
Scattered deletianu~~v = {ug - - - ugups1 | k=1 u = ugvy - - - up VU1, V = V1 -+ - U}y
with ~»! = Land~" = ~».
Balanced literal shuffleu Ly v = {uive---ugvr | k>0, = w1 up,v = vy--- vy,
ui, v € 2, 1<i <k}, with L, = ~>p. Observe that Luip v = @ iff |u| # [v].
Balanced literal deletion u~»pjv = {uy---uy | k=0,u = ugvy- - ugvk, v = vy - - Vg,
ui, v € 2, 1<i <k}, with ~{, = L.
If x andy are symbols irf{Z, r,” }, the notatiorx>*” represents the operati@g®*)”. The
following identities between operations of the forgy*” have been established
in [13]:

_ /
=g

<>ll — <>rr — <>// =,
<>/1 — <>r/ — Olr .

For the composition and inversion of more complicated word operations, the following
notations and technical results will be helpful.

Definition 3.2. Letx, x1, x2, y, y1, y2 € 2* and let®>1, <, be binary word operations. We
define the composed operatiars; ; <) and (<> : <>») as follows:

() x(C15 02 (135 y2) = (x G1y1) G2 y2,

(i) (x1:x2)(C1:02)y = x1 01 (X202 Y).

We note that<>1 ; <¢») and(<>1 : <>») are not binary word operations in the above sense,
but they can be viewed as special ternary operations over words.

Lemma 3.3. (i) (x1:x2)($1:<02)y = y(Oh 3 O (x25 x1),
(i) x(01: 02 (15 y2) = x(Oh: D (25 y1),
(ii)) (x1:x2)(C1:02)"y = (x2:x1) (G : Py

Proof.
() (x1:x2)(O1:02)y=x101(x2 02 y) = (2 02 y) O x1= (v Oh x2) O X1 = y(Oh 1 <))
(i) %fe g’cgfement has been prover13].
(ii)) y e (x1:x2)(01:02) 2 iff 7€ (x1:x2)(O1:<00)y  ff
7 € y(&h: O (x2; x1) iff y € 2(Oh; O (xz s xq) iff
y € 2(Of 5 09 (x1; x2) iff vy ey O (xns xp) iff
y € (20 x1) Y x2 iff y € x205(x1 < 2) iff

¥ € (x2:x1) (5 : )z ]
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Now we introduce the generalizing concept of word operations on trajeciéylés16,19].
Consider drajectory alphabetV = {0, 1} and assum& N X = @. We calltrajectoryany
stringt € V*. A trajectory is essentially a syntactical condition which specifies how an
operatiork> is applied to the letters of its two operands. Let V* be a trajectory and let
o, § be two words over.

Definition 3.4. The shuffle ofx with  on the trajectory, denoted by LL, f, is defined

as follows: L o
ol f={oafy...oufrlo=01...0%, f=P1...0 t =011 O*Lk,

where|o,, | = in, and|f,,| = jn for allm, 1<m <k}.

Example 3.5. Let o« = ajay...as, f = bibs...bs and assume that = 03120%10101.
The shuffle ofx andf on the trajectory is

oLl f = {arazazbiboasasasbzarbaaghs).

Notice that the above definition implies.Li; f = @ if |«| # |t|o or |f] # |t]1. Analo-
gously, deletion on a trajectory is defined.

Definition 3.6. The deletion off from o on the trajectory is the following binary word
operation: o o
o~ f=fog.cop |l =01fq ... Py f=Pr... Pt = 0L O* DK,
where|o,, | = i, and|f,,| = j, forall m, 1<m <k}

Example 3.7. Let o = babaab, f = bb and assume that= 001001. The deletion of
from o on the trajectory is

o~ f = {baaa}.

Notice also that for given, f3, t we have always carfd L i, ) <1, carda~;f) <1.
A set of trajectoriess any setl’ C V*. Theshuffle(deletion) of « with  on the setT,
denoted by Lz 8 (a~=7f), is

2o f=Jao b, ()

teT

where <> stands forLl or ~~, respectively. The operationsly and ~»7 generalize to
languages due to the general princifdlg Some basic operations of sequential deletion of
words and languages are particular cases of the shuffle or deletion on trajectories.

e LetT =0"1*. ThenLLr = -, the catenation, and:7 = —q, the right quotient.
e Let 7T = 1*0*. ThenLur = -/, the reversed catenation, areér = —q, the left
quotient.

e ForT = V*we haveLLl; = L and~y = ~-.

e LetT = (0D*. Thenly = Ly and~»7 = ~vp.

The following results are proven [4,15,16,19] or follow directly by proof techniques used
ibidem.
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Lemma 3.8. Let T be a set of trajectories. Then
() W) = ~7and, = ik,

(i) W,IZ: = LWy and~} = ~7,

whereT is the set of trajectories obtained by replacing @ for 1's and vice versa in all

the trajectories off".

Lemma 3.9. Let T be a set of trajectories. The following assertions are equivalent
() For all regular languaged.1, Lo, L1 LLi7 L» is a regular language
(i) Tisaregular language

Lemma 3.10. For all regular languagesL1, L, and a regular set of trajectorie¥’,
Li~7 Ly is aregular language

4. Bond-free DNA languages

Most of the DNA language properties defined in SecRaare intended to prevent un-
wanted bonds between two distinct DNA strands. These strands need not be perfect comple-
ments of each other, but they may also contain some blunt ends or other slight differences.
Word operations on trajectories prove useful when looking for a general approach to vari-
ous types of properties which differ by type of bonds and free ends, see Fig. 3. Formally,
a propertyP is a mappingP : 2 —> {true falsel. We say that a languadehas (or
satisfies) the propert® if P(L) = true.

Definition 4.1. A language propertP is called abond-free property of degreeiPthere
exist binary word operation$,, <yp and an involutiort) such that for an arbitrarg < 2*,
P(L) = true iff

Ywe X, x,y e Z*, (wOox NL # 0, w Oy NOL) #V) = xy = A 3

Hence each DNA language property based on bontsadingle DNA strands, that can
be expressed in the formB) is called dond-free property of degrez In the remainder of
this paper we write simplpond-free propertyor bond-free property of degree two.

Intuitively, w andf(w) are complementary parts of the lower and the upper strand, respec-
tively. The operations>, and<,, add free “sticky” ends to these complementary parts,
producing a complete lower and upper strand, respectively. These strands adopt specific
forms as those described in Fig. 3. In most cases of interest the operafiors,, adopt
a more specific form. Particularly, in this and the following section we assume that

Clo = LT, Qup = 71y,
for some trajectory setfo, Tup S V*.

Theorem 4.2. The language propertig®), (C), (D), (G), (H), (1), (M.1), (M.2)are bond-
free properties. Moreovethe associated sets of trajectorigg, 7,p are regular
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Proof. Assume that) is an antimorphism and define the sets of trajectofigsTyp as
follows:

(B) Tio = 0T, Typ = 1*0* 1%,

(C) Tio = 0%, Typ = 10

(D) Tip =0T, Typ = 0T 1%,

(G) Tio = 0T 1*, Typ = 011",

(H) Tio = 0T1*, Typ = 1*0T.

(I) Tio = 1*0*, Typ = OF1*.

Consider e.g. the property (HJ:3'-overhang-freedom. Thew Lz, x = {wx} and
w g,y = {yw}. The relations in §) take the formwx € L, yw € O(L). This is
equivalent towx € L, O(w)0(y) € L. Asxy = 1 iff x0(y) = 4, (3) corresponds
to the definition of (H) in Section 2. The proofs of the other mentioned properties are
analogous.

If 0 is a morphism, then all the sets of trajectorfgg must be replaced by the reversed
setsT.R and we obtairf(wy) = 0(w)0(y), the rest of the proof remaining unchanged. As
the property (M) is defined only fdt = I, the identity on2*, one can easily verify that, in
this case,

(M.1) Tjp = 0%, Typ = 1*0*1*.

(M.2) Tio = 1*0%, Typ = 01 1% |

Observe thaflis, Typ for a certain property corresponds to the “shape” of the bonds
prohibited in languages satisfying the property. This correspondence can be even enhanced

by the concept dDNA trajectories—strings over the alphab&bpna = {(Z) (;) ({) (}) ]
In this notationb stands for a bonded letter afitbr a free letter in a DNA sequence.
Let Pup Po : VONA — V be morphisms defined as follows:

Pup ((Z)) =0, ¢yp ((;)) = Qup <(£)) =1 ¢y ((;)) =),
Pl ((Z)) =0, ¢p ((f,:)) = 90 ((J?-)) —1 ¢ (({)) -

For any bond-free property associated with a pair of $gtslyp we construct the set of
DNA trajectoriesSas follows:

S = {S S VSNA | (p|O(S) S T|0, q)up(s) S Tup}

Forthe properties (B), (C), (D), (G), (H), (1) we obtain the following sets of DNA trajectories

(compare with Fig3):
+
") OO

(B) 0-compliant: Sg = (/)"

(G) 0-sticky-free: S& = ()" (/)" (()) v ()") I

A f
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(H) 6-3-overhang-free Sy = (E)*(b)+(;)*

b \f

() 0-5-overhang-free S, = (;)*(Z)’L(f)* _
As the following result shows, the DNA trajectories allow us to establish mutual relations
between DNA language properties easily. For a set of DNA traject&réasl a language

L C X2*, denote
Ls={xye 2 | w L (5) X NL # @, wl—l—l(pup(S) yn O(L) # B, we Z+} (4)

Denote further byPs a bond-free property associated with the set of DNA trajectdfies
Comparing with Definitiort.1, one can observe thBt (L) = true for a languagé C 2*
iff Lg C {A}.

Let P be a language property, denote 8yP) the set of all languages satisfyirig}
In other wordsC(P) = {L|P(L) = true}. The following theorem establishes relations
among bond-free properties.

Theorem 4.3. Let S1, S2 be sets of DNA trajectories
(i) S1 € S2 = C(Psy) 2 C(Ps,),
(i) S2851US2= C(Ps) € C(Ps;) NC(Ps,),

(i) SCSHNS2=C(Ps)2 C(Ps,) U C('PSZ).

Proof. Observe first that4) can be rewritten as

Ls= | {xye2"| w g, s X €L, w Wpyn(s2) Y € O(L), we Xt} (5)
51,5268

(i) ForeachL < 2*, (S1 € S2) = (Ls, € Ls,) = (Ls, € {4} = Ls;, € {A}) =
(Ps,(L) = true= Ps, (L) =true)= (C(Ps,) € C(Ps,)).

(i) By (5), (S 2 S1U S2) = (Ls 2 Ls, U Ls,) = (Ls € {A} impliesLs, € {4}
andLgs, € {A}) = (Ps(L) = true impliesPs, (L) = true andPs,(L) = true)=
(C(Ps) € C(Psy) N C(Psy)).

(i) By (i), (S € S1N S2) = (S S S1andS € Sz) = (C(Ps) 2 C(Ps,) andC(Ps) 2
C(Ps,)) = (C(Ps) 2 C(Ps;) U C(Ps,)). U

Hence, for properties (X) and (Y) associated with the trajectory$esgdSy, Sx C Sy
implies (Y) is stronger than (X). For example, lifis 0-compliant, then it is bott-p-
compliant and)-s-compliant, asSc U Sp C Sg.

The main reason for introducing Definitidrl is the characterization of bond-free proper-
ties via language inequations. This unified approach allows us to answer important questions
regarding these properties, e.g., decidability and maximality questions as shown below.

Theorem 4.4. There exist fixed regular sets of trajectories 7> € V* and regular lan-
guagesKi, Ko € (2 U V)* such that for a bond-free properfy associated with sets of
trajectoriesTj, and Typ, P(L) = true holds for anL < X* iff

((L Wl Tio) L7y (O(L) Llipl Tup))~1,K1 S Ko. (6)
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Proof. Let 71 = {00, 11,010%*, 7> = {00, 1113*, K1 = (U,cx {aaOO})Jr andK, =

(ZUV)*O(Z U V)* U {4).

(i) Assume tha?(L) = false for alanguagé € X*. Thenthereisy, w € X such that
wllly, x € L, wllly, vy € 0(L) for somery € Tio, tup € Typ. Denote

U1 =wlly, X, (7)
Uz =w Ly, y. 8
Letw =ay...am,x =b1...by,y=c1...cp,fora;,b;,ck € X,m>0,n+p > 0.
Then
ULyl to = 2122 . . . Zm4n SUCh thatz; = a;,0 0rz; = by, 1,
1<i<m+n, ji=lz1..-zilo, ki = |z1---2il1, 9
up Ll typ=2122 - - - Zm+p SUchthatz; =a;0o0rz; = ¢, 1,
1<i<m+p, ji=lz1...zilo, ki = lz1... zil1. (10)

DenoteL” = (L Ly Tio) L7, (O(L) Ly Typ). Asuy € L anduy € 0(L), clearly
(1 W) fio) LLITy (u2 Liip| typ) € L.

ThenL’ must contain a word of the form

V = 2122...Zm4n+p SUChthatz; =aja;;000rz; = by, lorz; = ¢l
I<i<m+n+p, 1< <m, 1<k <n, 1<; <p.

Consequentlyl.’~7, K1 must contain a word of the form

Z = 2122 ...Zn4+p SUChthatz; = byl orz; = ¢ 1,
1<i<n+p, 1<k <n, 1< <p.

Asn + p > 0,z ¢ Ko and hencef]) does not hold.

(i) Assume that§) does not hold, then there is a non-empty wairdZ'~- 7, K1 containing
no symbol 0. Notice that all the words iri~7, K1 arein(X-V U 2. V2)*_ Denote
I'=x.1Ux2.12 thenwe have € I'".

Consequently, there iswae L’ such that € v~»1,K1. As ~»7, is the left inverse of
LUz, We havev € zLLI, K1, and hence

ve 't Wy, K. (11)

Furthermorep € vy Lz, vz for somevs € L Ly Tio andv, € 0(L) Ly Typ. All the
parts ofv of the formaa00 (belonging tokK1 due to (L1)) have to be produced from
v1, v2 vVia the 0101 parts of a trajectory € T1. Then the symbols fromy immediately
preceding 0's inv; andvz must form two identical strings. In other words, andvs
must adopt the form of the right-hand sides of (9) and (10), respectively.
Inevitably, there must exist, xy € X7, 1o € Tio, tup € Typ such thatT), (8), (9), (10)
all hold. It follows thatw Ly, x € L, w Ly, y € 0(L), xy # 4, xy € Ls, and hence
P(L) =false. O
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Corollary 4.5. For each bond-free propert there is a binary word operatioflp such
thatP(L) = trueforan L C X* iff

LBpL C K».
Proof. By Theoremd.4, we define
xBpy = ((x LW Tio) Lz (O(y) LWpt Tup)~1, K1 [ (12)

The above characterization of bond-free language properties allows us to answer decid-
ability questions “IsP(L) = true for a given languagke and a property??” To measure
the complexity of these decision problems, we need to introduce some further concepts of
formal language theory first.

A non-deterministic finite automaton (NFA) withproductions (or transitions),/aNFA
for short, is a quintupled = (S, X, so, F, P) such thatSis the finite and non-empty set
of statesg is the start state; is the set of final states, aftlis the set of productions of
the formsx — ¢, wheres andt are states it andx is either a symbol ir¥ or the empty
word. If there is no production with = /, the automaton is called an NFA. If for every
two productions of the formx; — 71 andsxy — r2 of an NFA we have that; # x» then
the automaton is called a deterministic finite automaton (DFA). The language accepted by
the automator\ is denoted by (A). Thesize|A| of Ais the number card) + card P).

Let A1, A» be NFAs and let) be an involution. Then there are NFAs of the si2@A1| -
|A2|) accepting the languagésA1) U L(A2) andL(A1) N L(A2). The languagé(L(A1))
can be accepted by an NFA of the sjzg |. Similarly, if A1, A» are DFAs, then there are
DFAs of the size&)(|A1|-|A2|) accepting the languagésA1) UL(A2) andL(A1) NL(A2).
The languagé.(A1)¢ can be accepted by a DFA of the sjzg |. We refer the reader {@2]
or [23] for further details on automata and formal languages. The following lemma follows
by results in [4,15,19].

Lemma 4.6. Let L1, Lo and T be regular languages accepted by the NEAsA, and A7,
respectively
(i) There exists an NFA A acceptirig LIy Ly of the sizd A| = O(|A1] - |A2| - |AT]),
constructible in timgA|.
(i) There exists a-NFA A’ acceptingLi~~7 Ly of the sizdA’'| = O(|Ay] - |A2| - |AT]),
constructible in timgA’|.

Theorem 4.7. Let P be a bond-free property associated with regular sets of trajectories
Tio, Typ- Then the following problem is decidable in quadratic time

Input an NFAA.

Output Yes/No depending on whethie¢A) satisfiesP.

Proof. By (12) and repeated applications of Lemmata 3.9, 3.10, 4.6 we can construct a
J-NFA A’ acceptingL(A)BpL(A) intime O(|A|?), asTio, TupandK, are fixed. Then due

to Corollary 4.5 it is enough to test the emptiness of the langdage) N K5. As K> is

fixed and the size o’ is O(|A|?), this requires als®(|A|?) steps. O



L. Kari et al. / Theoretical Computer Science 334 (2005) 131-159 145

The decidability problems of some DNA properties were studiedi7]p where the
decidability of the properties (D) and (F) was shown. In [5] the decidability of (M) in
guadratic time is proven. In [8] an algorithm deciding (F) in quadratic time for finite
sets of codewords is presented. The following corollary generalizes all these previous
results into a uniform quadratic-time decidability procedure for all regular sets of
codewords.

Corollary 4.8. The following problem is decidable in quadratic time wji4]|:
Input an NFAA.
Output Yes/No depending on whethe(A) satisfies any of the properti€B),

(©), (D), (G), (H), (0, ) (M).

Itis known that for some bond-free properties there is no algorithm which would decide
whether a given context-free langudgsatisfies the property. The corresponding statement
has been proven ifT] for the case of the properties (B) and (F), where the alphalfietid
and equal tdA, C, G, T}.

Corollary 4.9. The following problem is undecidable
Input A bond-free propertyP associated with regular sets of trajectoriég,
Tup, and a context-free languagde.
Output YegNo depending on wheth@(L) = true.

5. Maximal bond-free languages

In the previous section we introduced the characterization of bond-free properties via
language inequations. Now we show that this approach may be applied also to maximality
problems (“IsL maximal w.r.t. a bond-free proper®?”). If L satisfying’P is not maxi-
mal, we can also give a formula characterizing an extended landifageL which still
satisfiesP.

To study these topics in detalil, first some more technical results are needed. The following
notion of maximal solutions to language inequations and of residue of the solution appears
in [13]. Let L, M < X* be two languages and It be a binary word operation. The
languageM represents the set of all applicable/constructible DNA strands in a case at hand.
Consider an inequation of the form

XOLCXS, XCM. (13)

The languag&maxis amaximal solutiorof (13) if Smaxis a solution (i.e., (13) holds true
for X = Smax), and for eaclx € M — Spax, SmaxU {x} is not a solution.
Let Sbhe a solution of (13). We call the language

R=M—(SUSGCLUSS L)

theresidueof S. The following theorem is a refinement of Proposition 6.21i8]. In the
proof we use the fact th&iis a solution of (13) if and only if it is a solution of ! L € X¢,
for X € M.
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Theorem 5.1. Let S be a solution of13), let R be the residue of, and letQ = {7z ¢
2*|z € z<$ LY. Then S is maximal ifR — Q = 0.

Proof.

“=" Suppose thaBis maximal but there exists aworde R — Q. LetT = S U {z}. We
show thafl is a solution of 13), thatisy &> L € TCforallt e T.Asz € R — Q,we
havethat e Mandz ¢ S,z ¢ SOL,z¢ SO L,z ¢ 2O L.

e If t € S, thenz ¢ < L due to the above, and furthermare> L C S¢, asSis a
solution of (L3). Hencef &L C T = S — {z}.

e If r =z, then again; ¢ z< L andz ¢ S<! L due to the above, henee> L C T¢.

Thus,T & L C T¢, henceT is a solution of 13) strictly containingS, a contradiction.

“&" Suppose thak — Q = ¢ butSis not maximal, i.e.T = S U {z} is a solution of 13)
forsomez e M — S. Thenz <O L C TC, SO L C TCandS <! L € T¢. This implies
z¢z<OL(andhence ¢ Q),z ¢ SO Landz ¢ SO L. Butasz e M — S, we have
7€M —(SUSOGLUSSO L) — Q, hencez € R — Q, a contradiction again. [

The following result from [13] explains the connection of inequation (13) with the max-
imality of bond-free languages.

Lemma 5.2. TheinequatioXEpX € KpwithX € M C X7 is equivalenttoXEI%Kg -
X‘withXx cMcXt,

Theorem 5.3. Let P be a bond-free property and € X" a set of words. For a language
L € M satisfyingP, denote

R=M - (LULBLKS5UK5E5L), (14)
Q={ze2*|z:BpzN K5 # 0}, (15)

whereBp is defined by12) and K> as in Theoren#.4.Then L is a maximal subset of M
satisfyingP iff R — Q = ¢.

Proof. Follows by Definition 3.1, Corollary 4.5, Theorem 5.1 and Lemma 5[2.

To construct an algorithm deciding the maximality of bond-free DNA languages due to
the above theorem, we need to calculate the inverses of the opdtition

Lemma 5.4. LetHp be a word operation defined §$2). Then
(i) 2Bpy = (2L, KD)~=1,(0(y) Lol Tup))~~biTio,
(i) xBpz = 0(((z L, K1)~ 7, (x Ll Tio))~bi Tup)-

Proof. All the following manipulations are based on repeated application of Definitions
3.1, 3.2 and Lemmata 3.3, 3.8.

() z € xBpy iff
z € ((x Wip Tio) L, (O(y) Lidpy Tup))~1, K1 iff



L. Kari et al. / Theoretical Computer Science 334 (2005) 131-159 147

z € (x (Wi ; L7y (Tio s 0(y) Wipt Tup))~1, K1 iff
z € (x (vory; o) (00y) Wl Tups Tio))~>1, K1 iff
z € x (s~ 5 ~1) (O0) Wy Tups Tio) ; K1) iff
z € x (Wpy (v ~p) (K15 (000) W Tups Tio))  iff
x € z (g ;s b)) (K13(0(y) Lipy Tup: Tio))  iff

x € (zlp, K1) (v1y 3 ~p1) (0(y) Lpl Tups Tio) iff
x € ((zWr, K1)~ (0(y) Wbt Tup))~biTio iff
X € zEllpy.

(i)  z e xBpyiff

z € ((x Wi Tio) L7, (0(y) Liipy Tup))~~1, K1 iff
z € K17, ((x Wi Tio) Ll (0(y) Lol Tup)) iff
z € (K1:x Wi Tio) (W/Tz gy (Tup g, 0(y)) iff

z € ((K1:x Wi Tio) : Tup) ((”"/7-2 LUy L) O(y) iff
0(y) € ((K1:x L Tio) : Tup) (7, 1Lllpy) sy z - iff
0(y) € (Tup:(K1:x Lyt Tio)) (Ll :(~7p, i) )z iff

0(y) € Tup |—|—|g|((K13x Ll Tio) (W/Tz ()" 2) iff
0(y) € TupLiigy((x Ll Tio - K1) (LI, :~4,) 2) iff
0(y) € ((x Ll Tio) LU, (K1Y, 2)) Lty Tup iff
0(y) € ((x LWl Tio) L7, (z L7, K1))~=bi Tup iff

y € 0(((z L, K1)~ (x Ll Tio))~~bi Tup) iff

y € xBpz. O

Theorem 5.5. Let 0 be an antimorphism and &P be one of the propertie), (C),
(D), (G). Let M < X* be a regular set of wordsand L < M a regular language
satisfyingP. Then there is an algorithm deciding whether L is a maximal subset of M

satisfyingP.

Proof. By Theorem5.3 it suffices to test whethgt — Q = @, whereR andQ are given
by (14) and (15), respectively. Recall thit, L and K, are regular languages aftl is
defined by (12). By Lemmata 3.9, 3.10, 5.4 we can construct an NFA accefting

By (15) and Corollary 4.5Q) is the set of all wordg such that the languadge} does
not satisfy the studied property—one of (B), (C), (D), (G). By definition of these properties
in Section 2, one can observe that for (B), (C), (D) we h@ve= . In the case of (G),
0 = U,ex(@2*0(a)). In all these case® is a regular language and hence the question
“R — Q = ¢?" is effectively decidable. [J

Theorem 5.6. Let 0 be a morphism and | be one of the propertie®), (C), (D), (H),
(I). LetM < X7 be aregular set of wordsind L € M a regular language satisfying.
Then there is an algorithm deciding whether L is a maximal subset of M satigfying
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Proof. Asinthe above proof, the statement can be reduced to deciding wiketh@r= ¢,
whereRis aregular language. For the properties (B), (C), (D) we have a@@ain. Denote
I' ={a € X |a = 0(a)}, then in the case of (H) we havg = I'>" and in the case of (I),
Q = XTI In all these case® is also regular and the problem is decidabl&l

Notice the difference between TheorefS and 5.6. For instance,(ifis a morphism as
in Theorem 5.6 and we consider the property (G), tQeis a context-sensitive language
{(x2*0(x) | x € XT}. Therefore (G) is not mentioned in Theorem 5.6 as the queskon *

0 = #?” might be undecidable.

Let A be a DFA acceptind.. The procedure described in the two above proofs involves
applying operations oA that result in an NFA and then taking the complement of that
NFA. This process may require an exponential number of steps|w.rin the worst case.
However, as the following theorem shows, we can obtain a polynomial-time algorithm at
least for finite languages.

Lemma 5.7. Let L and M be two languages such tHatc M and L satisfies the property
(B). Let R be the set defined in TheorBrBand 6 be an involution. Then

R=M— (LUZ*O(L)2T U ZTOL)X* USub(0(L))).

whereSubi(L) is the set of all proper subwords of L

Proof. As L satisfies property (B), Corolla®.5 implies thatl is a solution ofLHpL C
K2, wherexBpy is defined in (12). Moreover, by the definition 8§, it follows that
Typ = 1*0*1* andTj, = 0T. By Lemma 5.4 we have that

K58y = (K§ Wiz, K1)~ 1, (0(y) Lip) 107 1) ~pi0F
O0(xBHpK3) = (K3 L, K1)~ (x LLpl 01))~p 1011,

whereKq, T1 andT» are defined in Theorem 4.4. As the langu&yjs a subset o™, we
restrict our attention to the setsH, K5) N 2% and(KgElpL) N 2*. In particular we show
next thatd (x5, K5) N 2* = T¥ Xt U TaZH and(KgElpy) N 2* = Sub(0(y)).

Letfbe aword i)(xB5pK5) N X*. First note thak'§ LLi7, K1 consists of words of the
form woviws - - - v,w,, Where eachy; is either empty or ifz U {1})2, and each; is either
empty or of the formb;5;00, withb; € X. Also, the seix LLi, 0T is equal tofu}, with u
being of the formz;0- - - a,, 0, where they;'s are the symbols of Thenf e 2o~p 10T 1%,
wherez, is a word inw~~,u with ¢t € T1. Thusz, must be of the form

x11- . -xi_llx,-O- . -x,-+j_10xi+j1- . -xkl

withk>1, 1<i <k, j>1and each; being inX. One can verify that for every non-empty
subwordw; of w the corresponding subword of the trajectbmust be 00 and, for every
non-empty subword; of w, the corresponding subword binust be 1010. Hencg,= m
andx;y, = ar41 forallr = 0,...,m — 1. Moreover, as. is not in K5, at least one
subwordw; of w is non-empty. Hence is of the formuya10- - - a,,0u, for some words
uy, up € XU {1} with uqup # 7, and thereforé must be inZ*x >+ U Xt xX*.

Now observe thatE}, K% is equal taX{ «— 0(x), where<— is the insertion operation
andX; = ¥ U {1}. One verifies thak € yBE2KS if and only ifx € 6(y) = X and,
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therefore, aﬁg _ 517;, (K§Epy) = 0(y) = XT. Moreover, asy € 2*, we have that
0(y) = X7 = 0(y) = X n Z* which is equal to SUd(y)). O

Theorem 5.8. The following problem is decidable in tim@(||L||3|A|), where| L| is the
quantity) ", ., |wl.

Input DFA A and a finite language L such that € L(A) and L satisfies the pro-
perty(B).

Output YegNo, depending on whether L is a maximal subset o) satisfying(B).

Proof. Let M = L(A) and letRy = L U X*0(L)>+ U Zt0(L)>* U Sub(0(L)). By
Theorenb.3 and Lemma 5.7, to decide whethds maximal, it is sufficient to test whether
the languageé/ N R{ is empty—recall from the previous theorem that the(3&dr property
(B) is empty. LetRo = L U Sul(0(L)) U 2*0(L)2*. One verifies thaR, = Ry U O(L),
which is equivalent taRS = R{ N O(L)“. This implies thaiR{ = (R{ N O(L)) U R5. Hence,
M N R{ is empty if and only ifM N RS is empty andV N R{ N O(L) is empty.
The algorithm consists of the following steps.
1. Construct DFAsAg, A1 and A, accepting the languagés Sub(0(L)) and2*0(L)2*,
respectively.
2. Use a product construction oty, A1 and A, to obtain a complete DFM 3 accepting
R, and then consider the DFA§ acceptingRs.
3. Use a product construction off; andA to obtain a DFAA4 accepting the language
M N RS.
4. Outpu'f No and quit, if there is a path from the start state to a final statg. of
5. For eachw € L, if O(w) is in M andf(w) is not inL andf(w) is not in Sub(f(L)) and
O(w) is notinX*O(L)X+ U XT0(L)X*, output No and quit.
6. Output Yes.
The DFA Ag is the trie corresponding tb and can be constructed in tine(||L|]) [3].
The DFA A; is the factor automaton accepting $@&.)) and can be constructed in time
O(JIL|) [3]- The DFA A5 can be constructed fromin time O (|| L||) as well, by modifying
the construction of the dictionary matching DFA acceptiig(L) [13]. It follows now
that|Ag| = |A3| = O(|IL|1® and|A4] = O(||L||3|A]). The fourth step of the algorithm
requires time proportional to the size 4f.
For the fifth step, we note the following. For each wardn L, testing whethef(w)
is not inL can be done in tim® (||L]|), and testing whethel(w) is in M can be done in
time O (|w|) by running the DFAA on inputf(w). Hence, for alw, these two tests require
time O(||L||%). Now we need to test, for eaah € L, whetherf(w) is not in Sub(0(L))
and0(w) is not in X*0(L)XT U XTO(L)X*. This is equivalent to testing, for each word
u € L with u # w, whether the conditiond(w) is not a subword of (1) AND 0(u) is not
a subword of(w)) is true. The question of whether a words a subword of a worg is
a pattern matching problem and can be solved in tihiec| + |y|) [3]. Hence, the overall
time for the remaining tests 9 (|| L[?). O

The language inequation approach can be used also for construction of extensions of
non-maximal bond-free DNA languages. The following result is a direct consequence of
Proposition 6.3 in [13].
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Theorem 5.9. Let P be a bond-free property ant¥ C X a set of words. LeL. € M be
a language satisfyin@. Denote

Ly = M N (KsB5L)° N (KsBHL) BpKS)°,
Ly = M N (LBRKS N (KB (LB KS))E.
ThenL C L; € M andP(L;) = true, fori =1, 2.

Given a language satisfying a certain bond-free property, the above theorem allows us
to construct “larger” languages satisfying the same property and contdiniigwever, if
Ais the NFA acceptind., the procedure may require an exponential number of steps w.r.t.
|A] in the worst case.

6. Strictly bond-free languages

In this section we focus mostly on the strict versions of the DNA language properties
(B)—(L), i.e., their conjunctions with (A). As we already mentioned in Se@idghe property
(E) is equal to strictly (B), hence we do not refer to (E) in the sequel. The motivation for the
following general concept of sirictly bond-fregproperty is the fact that the strict versions
of the above properties are its special cases. The property (A) itself is a special case of
strictly bond-freedom. For some choices of the operatiyps<p below, however, the (A)
property need not necessarily hold. This is verified by the fact that (non-strictly) (L) is also
a special case of the strictly bond-free property.

Definition 6.1. A language propert® is called thestrictly bond-free property of degree
if there are binary word operatiors,, <>yp and an involutiort) such that for an arbitrary
L C X*,P(L) = true iff

Yw,x,y € Z* (wOpx NL#P, wdypyNOL) #0) = w =4 (16)

The formulationstrictly bond-free property of degre2is used to stress the fact that
the property describes bonds ofo single DNA strands. In the remainder of this pa-
per we write simplystrictly bond-free propertyfor the strictly bond-free property of
degree two.

Theorem 6.2. The language propertig@®\), strictly (B)—(D), strictly (G)—(l), (L), strictly
(L) are strictly bond-free properties

Proof. Let &g = Lg, and<Gyp = L7y whereTj, and Typ are the sets of trajectories
used in the proof of Theorem?2. For the properties not studied in Theorem 4.2 we define
the sets of trajectorieBo, Tup as follows:

(A) Tio = Tup = 0+,
L Tio = Tup = 1*0°1%,
strictly (L) Tio = Tup = 1*0F1* U O,



L. Kari et al. / Theoretical Computer Science 334 (2005) 131-159 151

Hence for the above-mentioned propertig8)(adopts the form
Yw,x,y € 2* (wllp, x N L # 0, wir, yNO(L) #0) = w =4 a7

Consider first the properties strictly (A), strictly (B)—(D), strictly (G)—(I) for which we have
x LLg, A = x g, A = x for eachx € X*. Then (17) is equivalent to

YweXt, x,yeX* —(w g, x VL # @, willy,y NO(L) # ¥) iff
Ywe 2T, (=(wlig, ANL # 9, w L, AN O(L) # 0)

A(Vx,y € 2*, xy #4,) ~(wlgy, x N L # 0, wily, yNO(L) #0)) iff
YVweXt, m(welL well) AVYweXt, x,yeX*

—(wllr, x VL # 0, wily,yNOL) #0, xy # 1) iff
LNOL) =0 A YweXT x,yeX*

(wllp, x NL # 0, wilg,, yNOL) #0) = xy # 4,

which is further equivalent to strictly bond freedom by Definiti@h$, 6.1 and Theorem

4.2. The proof for (L) and strictly (L) is similar except that in the case of (L) we do not
obtain the conditiod N O(L) =¢. O

Our interest now will be to express the strictly bond-free language properties via language
inequations as in Section 4.

Theorem 6.3. Let’P be a strictly bond-free property associated with operatiogs <up.
For a languageL € X*, P(L) = true iff

(L Ofy Z5) 1+ (O(L) O ) = 0. 18)
Proof. Recall that due to Definitiof.1,P(L) = true iff

Yw,x,y € X, (wOpxNL#D, wdypyNOL) #0) = w=247 iff
Yw,x,ye ¥ QueL,acwdpx, P el(L),fecwdypy) =w=241 iff
Vw,x,yeX* @xeL,weadx, IellL),wefdlyy)=w=24 iff

Yw,x,y € X*, weLQfox,wGH(L)Q{priwz)u iff
Ywe X*, weLQfOZ*,wGH(L)Q{JpZ*:w:/l iff
(LOjo 2 N (O(L) 0l 2%) S (A) iff

(LOjp 291+ (O(L) Ol 2y = 0. O

As in Section4, we present a general result about effective decidability of the strictly
bond-free properties for a given regular languége

Theorem 6.4. Let P be a strictly bond-free property associated with operatidns =
LUz, Qup = LU7,,, With regular sets of trajectoriegjo, Tup. Then the following problem
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is decidable in quadratic time
Input an NFAA.
Output YegNo depending on whethér(A) satisfiespP.

Proof. Due to Theoremd.2, 6.2, 6.3, a described strictly bond-free property can be ex-
pressed in the form

U:ammu%Zﬂwﬁw@m»m%2ﬂ=ﬂ
Then by Lemmat&.8, 3.10, 4.6, thé-NFA A’ acceptingL’ can be constructed in time
O(|A]?), and so is its size. Hence, testing whethéA’) = ¢ or not is limited by the same
time bound. O

Corollary 6.5. LetP be any of the propertie®), strictly (B)-strictly (D), strictly (G)—
strictly (J), (L), strictly (L). The following problem is decidable in quadratic time w.r.t.
|Al:

Input an NFAA.

Output YegNo depending on whethér(A) satisfiesP.

On the other hand, at least for some strictly bond-free properties there is no algorithm
to decide whether a given context-free language satisfies the property. We demonstrate this
fact for the0-non-overlapping property (A).

Theorem 6.6. For a given context-free language L it is undecidable whether @-n®n-
overlapping or not

Proof. Let L1, L, be two context-free languages. Let@#) be symbols not ir¥; then
L = L1#0#)0(L>) is also a context-free language. Cleafly) (L) = @ iff LiNLy =@
which is undecidable. [J

Corollary 6.7. The following problem is undecidable
Input A strictly bond-free property? associated with regular sets of
trajectoriesTjo, Tup, and a context-free language
Output YegNo depending on wheth&r(L) = true.

7. Maximal strictly bond-free languages

In the sequel we concentrate on maximality problems‘Is 2* maximal with respect
to a strictly bond-free propertp?”). For this purpose, we reformulate Theorén3 as
follows.

Theorem 7.1. For each strictly bond-free properfy there is a binary word operationl »
such that for a languagé < 2*, P(L) = true iff

LEpL = 0. (19)
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Proof. By Theorem6.3, forx, y € X* we have
xEpy = (x Ofp Z)w10 (0() O 2. O (20)

We apply the techniques from Secti®for studying maximal bond free languages. It fol-
lows that as a first step we need to calculate the left and right inverse of the
operation-]p.

Lemma 7.2. Let[Jp be a word operation defined §20). Then
() 205y = (zLg+ (0(y) Ol Z*) 1o 27,
(i) xBpz = 0(((x Ol Z*)~0+2) Qup 2).

Proof. All the following manipulations are based on repeated application of Definitions
3.1, 3.2 and Lemmata 3.3, 3.8.

() z e xEpyiff

2 € (x Oy 21+ (0(y) Ol Z) iff
2 € x (Ol 1) (T 0(y) O 2*)  fiff
X €2 (O 1) (2% 0(y) Oy ) iff
x € z (Wit ; Opp) (0(y) O 2*; 2%) i
x € W (0() O 2 O 2+ iff
X € le!le.

iy zexCpyiff
2 € (X0l TN w1 (ZF O, 00))  iff
2 € (x O TF: 2%) (vorr 1O O(y) iff
0(y) € (xOfg Z*:2%) (vore Ol 2 iff
0(y) € (xOfp Z*:2%) (vore 100y 2 iff
0(y) € (Z*:1x 0, I (Opi~or) 2 ff
0(y) € Z* O p((x Oy Z¥)~0r2) iff
Y € 0(((x Olg Z)~0r2) Gup2*) i

y € xMhz. O

In the rest of this section we denake= {a € X |a = 0(a)}, a subalphabet of such
thatf is an identity oved". In the case of the DNA involution, of course]” = @.

Theorem 7.3. The following problem is decidable in tin@((|A| - |Ag| - |Ayu])3).
Input DFAS A, Ag and an NFAA ; such thatL(A) = 0(L(Ay)) € L(Ay) and
L(A) is 0-non-overlapping
Output Ye$No, depending on whethek(A) is a maximalf-non-overlapping
subset of_ (A ).
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Proof. Similarly as in the proof of Theorers.5, our problem can be reduced to testing
whetherR — Q = @, where

R=M - (LULOLE* U051, (21)
Q0 ={z€2%|lpz # 0} (22)

andlJp is defined by 20). For thef-non-overlapping property we haw®, = <yp =
LLig+ by Theorem 6.2. Substituting into expressions in Lemma 7.2, we obtain after certain
conversions

LOLY* = Z*OLL = 0(L).

HenceR = M — (L U 0(L)) and the NFA accepting can be constructed in the time
O(A - 1Agl - [AmD).

By (22) and Theorem 7.1Q is the set of all wordz such that the languade} does not
satisfy the given propertp.

Let 0 be an antimorphism. By definition 6éfnon-overlapping property in Section 2, one
can observe that

Q0={zeXTz=0@)})={wabw)|we X", ae ' U{}.
The complement o is
O ={xay|x,ye X, ae XU}, |x| =|yl, x #0(y)ora # 0(a)} U {A}.

Both Q and Q¢ are context-free languages. Given a fixed PDA acceg@ifigvhose size is
constant, the PDA accepting — QO = R N Q€ has the siz&)(|A| - |Ag| - |Apm]). Then,
by Theorem 7.1 ifj6], we can construct an equivalent context-free gram@af the size
|G| = O((|A| - |1Ag| - |Ax )®). Finally, the algorithm described in [6], Section 7.4.3, testing
whetherL (G) = @, requires linear time with respect 6.

If 0is a morphism, the® = I't andQ¢ = >*(X —I') X*U{A}, afixed regular language.
Then the problem is decidable in tind&(|A| - |Ag| - |[Ap]) = O(AI?- |Ay]). O

Lemma 7.4. Let 0 be an antimorphisiyrlet k be a positive integer and let S be the set of
words u satisfying the conditic®uly () N Sub (0(«)) # @. Then

S = {xwyl(w)z|x,y,z € 2* w e 2~
U (xwal(w)y [x,y € Z*,a € I'U {4}, w € STk-lab/21y,

Proof. First note thau is in Siff u = xwz1 = x20(w)z, for some words:, z1, x2, z, w

with |w| = k and|x| <|x2|. Then one of the following conditions holds.

o [xw|<|x2| andu = xwy0(w)z, for some wordy.

o |xw| > |x2| andu = xsvs'z, for some words, s’, v with w = sv, O(w) = vs’, and
lv| > 0.

In the first casey is in S = {xwyf(w)z|x, y,z € 2*, w € 2*}. In the second case we

show thauimust be inS, = {xgal(g)z | x,z € 2*,a € I'U{J}, g € 2[*~1aD/21} ‘Indeed,

asf(w) = O(v)0(s) = vs’, one has thab = 0(v) ands’ = 0(s), which implies that

v = fal(f) for some word anda € I' U {A}. As |sv| = |s| + 2| f| + |a| = k, it follows
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that|sf|>[(k — |a|)/2]-otherwise|sf| < [(k — |a|)/2] would imply| f| < [(k —|a])/2]
and|f| =k —la| — |sf| > k—|a| — [(k — |a])/2] = |(k — |a])/2], which is impossible.
Thusu is of the formxsfa0(f)0(s)z with |sfa| > [k/2], which implies thau must be in
S2. Hence,S C S7 U So.

For the converse inclusion, first note ti$atC S. Moreover, every word gafl(g)z in S»
can be written in the formsfa0(f)0(s)z with |sfa0(f)| = k, by choosings = 4 and
f=gifk—laliseven,os € X andg = sf if k — |a| is odd. Hence$, C Saswell. [

Theorem 7.5. Letf be an antimorphism. L&® be any of the properties strict(§8)—strictly
(D), strictly (G), (L), strictly (L). Let M < Xt be a regular set of words anfl € M a
regular language satisfyin§. Then there is an algorithm deciding whether L is a maximal
subset of M satisfying.

Proof. As in the above proof, the decision algorithm must test whekherQ = ¢, where

R andQ are defined by41) and (22), respectively. Ad andL are regular languages, we

can construct an NFA acceptifusing Lemmata 3.9, 3.10, 7.2.

e For the properties strictly (B), strictly (C), strictly (D) we hag = {wa0(w) |w €
Xt a e I'U{/}}. As we have shown in the proof of Theoréh8, Q¢ is a context-free
language and hence there is an algorithm to test whé&herQ = RN Q¢ = ¢.

e For strictly (G),0 = ,c5(a2*0(a)), aregular language and hence again the question
“R — Q = @#?"is decidable.

e For (L), 0 = {z|Sulk(z) N Sulk.(0(z)) # ¥}. DenoteQ = Q for further use. By
Lemma7.4,

01 = [xwylw)z|x,y,z €% we Xk
U {xwabw)y|x,ye2*,aec TU{A,we sTk/21y,

As Q; is regular, the problem is decidable.
e For strictly (L),

0 = Q0 Ufwab(w) | lw| < [k/2],a € 'U{4}}.
Again Q is regular and the problem is decidablé.]

Similar results as above can be obtained in the cagebeing a morphism, but again a
technical result analogous to Lemma is needed first.

Lemma 7.6. Let 0 be a morphismlet k be a positive integer and let S be the set of words
u satisfying the conditioBuly. (z) N Sul. (0(u)) # @. Then

S = {xwyb(w)z|x, y,z € 2*, w e ZXyU ¥ ZX* U Xk,
where

Z = (wlw)0Pw) - -- 0" (w)x |w € 2*, x € Pref @ L (w)), n>1, |w"x| = k}.  (23)

Proof. DenoteS; = {xwyO(w)z | x, y,z € 2*, w € XX}, $o = X*I'*>* andS; = X*Z3*.
Then we can express our statemeng as S1 U So U S3. The same arguments as in the proof
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of Lemma7.4 show thatS; C S. Obviously alsaS, € S. Consider now a word € S3,
then

u = vwl(w)0?(w) - - - 0" (w)xy
for somev, y € 2*, andw, x as in 3). Consequently,

0(u) = 0@)O)wHIW)*(w) - - 0"~ )OO (y).
As 0(x) € Pref(6" (w)), we can write

wO(w)0*(w) -+ 0" (w)0(x) € Sub(u) N Sub(O(w)).

Hence, for each € S3, Suly. (1) N Subk, (O(1)) # ¥ and thusSy U S> U S3 C S.

For the converse inclusion, assume that S butu ¢ S1U So. We show that then € Ss.
We can assume without loss of generality that vizy1, 0(u) = vazys such thafz| = k
and|v1| <|vz2]. Then one can derive that| < |v2] < |v1z|. (If Jv1] = |v2], thenu € Sp;
if |vo|>|v1z|, thenu € S1.) Denotez = wz’ such thajw| = |va| — |v1], Z/ € 2*. Then

u = viwz'ys,
O(u) = 0(v)O(w)wz'ys.

Suppose thatz’| > |w|, thenz’ y1 = O(wz'y2) and hence’ = O(w)z” for somez” € X*.
Let again|z”| > |w|, similarly we can deduce that = 0%(w)z” for somez” € X*. By
induction, we get that

u = vwl(w)--- Qnil(w)f)’l,
O(u) = (1) O(w)ywd(w) - -- 0" (w)Zyz

for somen>1 and|Z| < |w|. As Zy1 = 00" L(w)Zy2) = 0" (w)0(Z)0(y2), We getz €
Pref(9" (w)) and we denote = 0(%) € Pref(0"*1(w)). Therefore,

u=vawlw) --- 0" (w)x0(y2)
which concludes the proof.[]

Theorem 7.7. Let 0 be a morphism. LeP be any of the properties strictlf{B)—strictly
(D), strictly (H), strictly (1), (L), strictly (L). Let M < X% be a regular set of words and
L € M aregular language satisfyin§. Then there is an algorithm deciding whether L is
a maximal subset of M satisfyirR,.

Proof. As in the proof of Theoreni.5, we need to decide whethBr— Q = ¢, whereR

andQ are defined by (21) and (22), respectively, &id a regular language.

e Using results of Theorem.3, one can easily derive for the properties strictly (B), strictly
(C), strictly (D), thatQ = I't and the problem is decidable.

e For strictly (H) or strictly (I),Q = I'>* or Q = 2*I', respectively, both regular lan-
guages, and the problem is decidable.
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e For (L), O = {z|Suh.(z) N Suk.(0(z)) # ¥}. DenoteQ = Q,, for further use. By
Lemma?.6,

01 = {xwyb(w)z|x, y,z € 2*, w e TXyU Z*Z3* U Z*rkz*,

whereZ is defined by 23). AsZ is finite, apparentlyQ; is regular and the problem is
decidable.

e For strictly (L), 0 = Q1 U U<, I'', a regular language, hence the problem is
decidable again. [J

The following theorem is a counterpart of Theorbr for the case of strictly bond-free
properties.

Theorem 7.8. Let P be a bond-free property ant¥ C X a set of words. Let. € M be
a language satisfyin@. Denote

Ly = M N (K5E5LL0)° N (KB, L) B, K5)C,
Ly = M N (LELKS)C N (K5 (LEL K5)9)C.

ThenL C L; € M andP(L;) = true, fori = 1, 2.

Again, given a languagke satisfying a certain strictly bond-free property, the above the-
orem allows us to construct “larger” languages satisfying the same property and containing
L. Its proof follows by Proposition 6.3 if13].

8. Summary

We studied a list of DNA language properties which prevent undesired bonds between two
distinct DNA strands. We characterized both their strict and non-strict versions by uniform
language inequations. This approach allows one to study these properties in an unified way,
and to answer certain important questions related to the construction of libraries of molecules
for DNA computing and experiments. In this paper we focused on questions whether a given
DNA language is free of bonds of specified types, and whether it is maximal w.r.t. this
property. Together with non-trivial recent results about solutions of language inequations
[13], we showed the existence of algorithms answering these questions for the majority of
the studied properties.

Applications of the above described approach are summarized in Tables 1 and 2. The
abbreviationdREG and CF denote the classes of regular and context-free languages, re-
spectively. In the columfi, the symbol A denotes antimorphism and M denotes morphism,

x stands for an arbitrary involution. In the columns corresponding to particular properties
(B)—(M), D stands for decidable, P for the existence of a polynomial-time algorithm, U for
undecidable and ? for an open problem. The dash ‘—' denotes an impossible combination of
parameters. Besides the results in Table 1, we also presented a polynomial-time algorithm
deciding maximality of dinite DNA language with respect to the property (B).

We hope that the described approach will prove useful also in further study of the proper-
ties of DNA languages. Among major open questions we mention study of fast algorithms
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Table 1
Decision problems of non-strict DNA language properties

Problem Class 0 Properties

B C D G H | J L M
Does a given language REG * P P P P P P P P P
satisfy the propertyP? CF * U ? ? ? ? ? ? ? ?
Is a given language REG A D D D D ? ? ? D —
maximal w.r.tP? REG M D D D ? D D ? D ?
Table 2
Decision problems of strict DNA language properties
Problem Class 0 Properties

A B C D G H | J L
Does a given language REG * P P P P P P P P P
satisfy the propertyP? CF * U ? ? ? ? ? ? ? ?
Is a given language REG A P D D D D ? ? ? D
maximal w.r.tP? REG M P D D D ? D D ? D

for construction of finite languages, methods preventing imperfect bonds between DNA
strands (i.e., with certain errors due to the Watson—Crick complementarity principle), and
study of influence of the secondary DNA structure and free energy of single strands. Some
of these questions are subject to recent research.
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