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Abstract

The input data for DNA computing must be encoded into the form of single or double DNA
strands. As complementary parts of single strands can bind together forming a double-stranded DNA
sequence, one has to impose restrictions on these sets of DNA words (languages) to prevent them
from interacting in undesirable ways. We recall a list of known properties of DNA languages which
are free of certain types of undesirable bonds. Then we introduce a general framework in which we
can characterize each of these properties by a solution of a uniform formal language inequation. This
characterization allows us among others to construct (i) a uniform algorithm deciding in polynomial
time whether a given DNA language possesses any of the studied properties, and (ii) in many cases
also an algorithm deciding whether a given DNA language is maximal with respect to the desired
property.
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1. Introduction

The main principle of DNA computing (or, more generally, molecular computing), can
be summarized as follows: given a problemP : I −→ O, with an input from a setI and an
output from a setO, we design an encoding of the input (respectively output) into a starting
set (respectively final set) of bio-molecules. Then there must be a set of possible reactions
such that for a given input set of molecules, these reactions produce a correct final set with
respect to the used encoding. One must be able to construct the input set of molecules for
a given inputi ∈ I , then to ensure conditions for the desired reactions to run, and finally
to detect the (non)presence of the final set of molecules in the reaction products. Unlike
conventional computers, molecular computing devices would work in a maximallyparallel
manner, and an input (a set of molecules) of an elementary computing step (i.e. reaction)
would beconsumedduring the reaction, producing a set of output molecules.
Themost important molecules in DNA computing techniques are the single- and double-

strandeddeoxyribonucleic acid(DNA) molecules. They are composed primarily ofnu-
cleotidesA, C, G, T attached to a sugar-phosphate backbone. The single-stranded DNA
molecule can be represented as a linear oriented sequence of these nucleotides. Orientation
is defined by convention from the 5′ end to the 3′ end of the strand. Two single stranded
oppositely oriented DNA molecules can bind together under favorable conditions due to
theWatson–Crick complementarity principle: A is complementary toT andC toG. Con-
versely, the double-stranded DNA molecule can be broken apart into two complementary
single-stranded components. These two operations, calledhybridization(annealing) and
denaturation(melting), are fundamental techniques of DNA computing. There are also
other bio-operations useful in DNA computing context, and we refer the reader to[2,20]
for further information (Fig. 1).
Given this framework, [18] and others distinguish two elementary subproblems of the

encoding design:
• Positive design problem: we design a set of input molecules such that there exists a way
for the sequence of reactions to produce the correct final set.

C G

G
C

A

T
A

T

G
C

T
A

T G

C G A

C

T A

G

C

(a)

(b)

(c)

(d)
(e)

5′

3′

5′
3′

Fig. 1. A segment of the deoxyribonucleic acid. (a) Sugar-phosphate backbone. (b) Nucleotide base pairs.
(c) Nucleotide bonds. (d) Watson–Crick complementarity principle (e) Codons—triples of nucleotides.
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• Negative design problem: the input set of molecules must not give way to the reac-
tions that produce undesired molecules encoding a false output, and/or to consume
the molecules in undesired reactions so that the correct final set cannot be
produced.
The positive design problem is usually highly related to the specific experiment or

computation at hand, and it is reported to be hard to find a general framework for its
solution. In contrast, the negative design problem can be solved on a general basis by
construction of a library of molecules which do not allow undesired mutual reactions.
These conclusions have been adopted by DNA computing researchers and there is a sig-
nificant number of papers devoted to either positive or negative DNA encoding design
problem. We refer the reader e.g. to[1,5,7–9,12,14,17] for studies of properties of such
a library and for methods of its construction. There are also many subtler questions con-
cerning the design problems. Various strengths of hybridization bonds due to the DNA
primary and secondary structure, free energy, melting temperature and other factors are
addressed in the literature. General information and further references can be found
e.g. in [2,20].
In this paper we focus on the problem of negative design of sets of DNA code-

words (i.e. DNA languages) which cannot produce undesirable mutual bonds. In Section
2, we give necessary formal language prerequisites and a list of 13 useful properties of
DNA languages studied by various authors. Section 3 gives insight into binary
word operations on trajectories which are extensively used in the remainder of the
paper.
In Section 4, we introduce the key concept of thebond-free language property, and show

that eight of the previously studied properties are its special cases. Moreover, the bond-free
property has an intuitive geometrical interpretation and favorable mathematical features.
In particular, one can construct a general quadratic-time algorithm deciding whether a
given regular set of codewords satisfies any of the mentioned special cases of the bond-free
property. We note that by the termalgorithmwe always mean adeterministicprocedure,
even if its input might be a non-deterministic formal automaton.
We then observe that the bond-free property is definable via language inequations. By

utilizing and improving recent results in [13] on language inequations, we show in Section
5 that for six instances of the bond-free property themaximalityproblem is decidable. This
means that there is an algorithm to decide whether or not a given regular set of codewords
can be further extended without the loss of the property or not. For the case of finite sets
we construct a polynomial-time algorithm deciding the maximality of the�-compliant
property. Finally, if an extension is possible, we give formulas characterizing an extended
set of codewords.
The same problems are addressed in Sections 6 and 7 for the so-calledstrictly bond-

free properties which have the added feature of excluding also exact matching pairs of
complementary codewords. This time we show that nine of the properties reported in the
literature fit into our general framework, with the same benefits as in the “non-strict” case.
For eight instances of them we are able to decide also the maximality of regular sets
of codewords, while for�-non-overlapping property we can achieve this in polynomial
time. The corresponding formulas for obtaining an extended set of codewords are also
given.
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2. Undesired bonds in DNA languages

Two types of unwanted hybridization are usually considered:intramolecular (within
a molecule) andintermolecular (between two or more molecules). The intramolecular
hybridization happens when twomutually complementary sequences appearing in the same
DNAstrandbind together formingahairpin, seeFig.2(a). Intermolecular hybridizationmay,
for example, involve two complementary sequences which are parts of two different strands
(b), or one of them is a portion of concatenation of two strands (c).
In the remainder of this paper we represent the single-strandedDNAmolecules by strings

over theDNA alphabet� = {A,C, T ,G}, and we reduce their mutual reactions to formal
manipulation of these strings. Therefore, some formal language prerequisites are necessary.
An alphabetis a finite and non-empty set of symbols. In the sequel we shall use a fixed

non-singleton alphabet�, as a generalization of the natural DNA alphabet�.
The set of all words over� is denoted by�∗. This set includes theempty word�. The

length of a wordw is denoted by|w|. |w|x denotes the number of occurrences ofxwithin
u, forw ∈ �∗, x ∈ �+. For a non-negative integernand a wordw, we usewn to denote the
word that consists ofn concatenated copies ofw. We denote the mirror image of the word
w bywR. A word v is asubwordof w if w = xvy for some wordsx andy. In this case, if
|x| + |y| > 0 thenv is aproper subword. By Sub(w) we denote the set of all subwords of
w. For a positive integerk, we use Subk(w) to denote the set of subwords of lengthk of w.
For prefixes we use analogously the notation Pref(w) and Prefk(w), respectively.
A languageL is a set of words, or equivalently a subset of�∗. A language is said to be

�-free if it does not contain the empty word. Ifn is a non-negative integer, we writeLn for
the language consisting of all words of the formw1 · · ·wn such that eachwi is in L. We
also writeL∗ for the languageL0 ∪L1 ∪L2 ∪ · · ·, andL+ for the languageL∗ − {�}. The
notationLc represents the complement of the languageL; that is,Lc = �∗ −L. The mirror
image ofL isLR = {wR |w ∈ L}. By Sub(L) we denote the set of all subwords ofL, i.e.,
Sub(L) = ⋃

w∈L Sub(w).
Amapping� : �∗ → �∗ is calledamorphism(anti-morphism) of�∗ if �(uv) = �(u)�(v)

(respectively�(uv) = �(v)�(u)) for all u, v ∈ �∗. Note that both a morphism and an anti-
morphism of�∗ are completely defined if we define their values on the letters of�.
An involution� : � → � of � is a mapping such that�2 is equal to the identity mapping,

i.e.,�(�(x)) = x for all x ∈ �. It follows then that an involution� is bijective and� = �−1.
The identity mapping is a trivial example of an involution. In general, iff : � → � is an
involution, then� can be partitioned into� = �∪�′ ∪�where card(�) = card(�′) and,
for everya ∈ � we havef (a) = a′, f (a′) = a, a′ ∈ �′, while f (b) = b for all b ∈ �. If
� = �′ = ∅ thenf is the identity on�, while if � = ∅ f is a sort of complement function
on� which maps every element of� into an element of�′ and vice versa.

(a) (b) (c)

Fig. 2. Types of undesired (a) intramolecular and (b), (c) intermolecular hybridizations.
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An involution of � can be extended to either a morphism or an antimorphism of�∗.
For example, if the identity of� is extended to a morphism of�∗, we obtain the identity
involution of �∗. However, if we extend the identity of� to an antimorphism of�∗ we
obtain instead the mirror-image involution of�∗ that maps each wordu into uR where

u = a1a2 . . . ak, uR = ak . . . a2a1, ai ∈ �,1� i�k.

If we consider the DNA-alphabet�, then the mapping� : � → � defined by�(A) =
T , �(T ) = A, �(C) = G, �(G) = C can be extended in the usual way to an antimorphism
of �∗ that is also an involution of�∗. This involution formalizes the notion of Watson–
Crick complement of a DNA sequence and will therefore be called theDNA involution,
[12]. By convention, a wordw = a1a2 . . . an in �∗ will signify the DNA single strand
5′ −a1a2 . . . an−3′. Then single strandsw1, w2 ∈ �∗ are complementary iffw1 = �(w2).
Nowwe are ready to give a list of desirable properties of a DNA languageL ⊆ �+ which

have been defined in [7,12,14].
(A) �-non-overlapping: L ∩ �(L) = ∅.
(B) �-compliant: ∀w ∈ L, x, y ∈ �∗, w, x�(w)y ∈ L ⇒ xy = �.

(C) �-p-compliant: ∀w ∈ L, y ∈ �∗, w, �(w)y ∈ L ⇒ y = �.

(D) �-s-compliant: ∀w ∈ L, y ∈ �∗, w, y�(w) ∈ L ⇒ y = �.

(E) strictly �-compliant: both�-compliant and�-non-overlapping.

(F) �-free: L2 ∩ �+�(L)�+ = ∅.
(G) �-sticky-free: ∀w ∈ �+, x, y ∈ �∗, wx, y�(w) ∈ L ⇒ xy = �.

(H) �-3′-overhang-free: ∀w ∈ �+, x, y ∈ �∗, wx, �(w)y ∈ L ⇒ xy = �.

(I) �-5′-overhang-free: ∀w ∈ �+, x, y ∈ �∗, xw, y�(w) ∈ L ⇒ xy = �.

(J) �-overhang-free: both�-3′-overhang-free and�-5′-overhang-free.
For convenience, we agree to say that a languageL containing the empty word has one

of the above properties ifL \ {�} has that property. Observe that (F) avoids situations like
Fig. 2(c), while other properties exclude special cases of (b).
In [9], a �-non-overlapping language is called to bestrictly �. Generally, if any other

property holds in conjunction with (A), we add the qualifierstrictly. We have already used
this notation for the property (E). Bothstrict andnon-strictproperties turn out to be useful
in certain situations.
For example, it might be useful to find out whether or not a languageL has a non-strict

property in a situation such as follows. The usual way to check for the presence of a certain
single-stranded molecule is to add to the solution the complement of it and use enzymes
to destroy any molecules which are not double stranded (possibly with blunt ends). Let
the solution be non-strictly bond-free (exact matches are allowed). Then, the presence of a
molecule indicates a perfect hybridization, hence the presence of the desired molecule.
Further properties have been defined in [9] for a languageL. Observe that the property

(K) avoids bonds like those in Fig. 2(a):
(K) � (k,m1,m2)-subword compliant: ∀u ∈ �k, �∗u�m�(u)�∗ ∩ L = ∅ for k > 0,

m1�m�m2.
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Fig. 3. Classes of languages satisfying various DNA language properties.

(L) �-k-code: Subk(L) ∩ Subk(�(L)) = ∅, k > 0.
The following property is defined for� = I , the identity relation, in[5]. A languageL is

called
(M) solid if:
(1) ∀x, y, u ∈ �∗, u, xuy ∈ L ⇒ xy = �, and
(2) ∀x, y ∈ �∗, u ∈ �+, xu, uy ∈ L ⇒ xy = �.

L is solid relative to anM ⊆ �∗ if (1) and (2) above hold only forw = pxuyq ∈ M. L is
calledcomma-freeif it is solid relative toL∗. Solid languages are also used in[14] as a tool
for constructing error-detecting DNA languages that are invariant under bio-operations.
Fig. 3 shows the hierarchy of some of the above language properties. Arrows stand for

inclusion relations among language classes corresponding to the properties.

Example 2.1. Consider the languageL = {AnT n | n�1} ⊂ �+, and the antimorphism�.
Observe that�(L) = L. We can deduce thatL is
• neither�-non-overlapping, nor�-k-code for anyk�1;
• not �-compliant, as forw = AnT n, x = A, y = T we havew, x�(w)y ∈ L;
• �-p-compliant, asw, �(w)y ∈ L implies w = AnT n, y = �; similarly, L is �-s-
compliant;

• not �-free, asAnT nAmT m, n,m > 1, is both inL2 and in�+L�+;
• not �-sticky-free, as forw = y = An x = T n we havewx, y�(w) ∈ L;
• �-3′-overhang-free, aswx, �(w)y ∈ L impliesw = AnT m, x = T n−m, y = T m−n and
hencexy = �; similarly, L is �-5′-overhang-free and hence�-overhang-free;

• not�(k,m1,m2)-subword compliant for anyk,m1,m2.
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Besides the inclusion relations in Fig.3, there are further relations amongDNA languages
which are free of various types of (a), (b) or (c) bonds. The following results are shown in
[9,14] or follow easily by the definitions (assume that∅ �= L ⊆ �+).
(i) Let � be a morphism. ThenL satisfies any of the properties (A)–(M) iff�(L) does
so.

(ii) Let � be an antimorphism. ThenL satisfies any of the properties (A), (B), (E)–(G),
(J)–(L) iff �(L)doesso.Moreover,L satisfies (C) iff�(L) satisfies(D), andsimilarly
for (H) and (I).

(iii) Denote byLp (Ls) the set of all proper non-empty prefixes (suffixes, respectively)
of L. L is �-sticky-free iffLp ∩ �(Ls) = ∅ andL is both�-p-compliant and�-s-
compliant.

(iv) Let � be a morphism,L be�-compliant and�-sticky-free. ThenL is �-free.
(v) Let � be an antimorphism,L be�-compliant and either�-3′-overhang-free or�-5′-

overhang-free. ThenL is �-free.
(vi) If L is �-free, then it is�-compliant.
(vii) If L is strictly� andL2 is�(k,1,m)-subword-compliant for allm�1, thenL is strictly

�-k-code.
(viii) If L is �-k-code then it is�(k,1,m)-subword-compliant for allm�1. Furthermore,

if k� |x|/2 for all x ∈ L thenL is �-free.

3. Binary word operations

Binary word operations are extensively used in the following sections as an important
tool for representing interaction of DNA molecules. Abinary word operationis a mapping
♦ : �∗ × �∗ → 2�

∗
, where 2�

∗
is the set of all subsets of�∗. Hence the result of the

operation♦ with operandsu, v ∈ �∗ is generally a language(u♦ v) ⊆ �∗. In some
important particular cases we have card(u♦ v) = 1 for u, v ∈ �∗. If there is no risk of
misunderstanding, we may then assumeu♦ v = w, w ∈ �∗, instead of the singleton
language{w} ⊆ �∗. A typical example is the catenation operationu · v.
We extend binary operations to any languagesX andYas follows:

X♦Y = ⋃
u∈X,v∈Y

u♦ v. (1)

Definition 3.1 (Kari [11] ). Let♦ be an operation. The left inverse♦l and the right inverse
♦r of ♦ are defined as

w ∈ (x♦ v) iff x ∈ (w♦l v), for all v, x,w ∈ �∗,

w ∈ (u♦ y) iff y ∈ (u♦r w), for all u, y,w ∈ �∗.

Let♦ be a binary word operation. The word operation♦′ defined byu♦′ v = v♦ u is
called reversed♦. Below we list a few binary word operations needed in the following text
[10,13,19].
Catenation: u · v = {uv}, with ·l = −→rq and·r = −→lq.
Left quotient: u −→lq v = {w} if u = vw, with−→l

lq = ·′ and−→r
lq = ·.
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Right quotient: u −→rq v = {w} if u = wv, with−→l
rq = · and−→r

rq = −→′
lq.

Insertion: u ←− v = {u1vu2 | u = u1u2}, with←−l = −→ and←−r = ⇀↽
′.

Deletion: u −→ v = {u1u2 | u = u1vu2}, with−→l =←− and−→r = ⇀↽.
Dipolar deletion: u ⇀↽ v = {w | u = v1wv2, v = v1v2}, with⇀↽

l =←−′ and⇀↽r = −→.
Shuffle(or scattered insertion): u�� v = {u1v1 · · · ukvkuk+1 | k�1, u = u1 · · · ukuk+1,

v = v1 · · · vk}, with ��l = � and��r = �′.
Scattered deletion: u�v = {u1 · · · ukuk+1 | k�1, u = u1v1 · · · ukvkuk+1, v = v1 · · · vk},
with�l = �� and�r = �.

Balanced literal shuffle: u��bl v = {u1v1 · · · ukvk | k�0, u = u1 · · · uk, v = v1 · · · vk,
ui, vi ∈ �,1� i�k}, with ��l

bl = �bl. Observe thatu��bl v = ∅ iff |u| �= |v|.
Balanced literal deletion: u�blv = {u1 · · · uk | k�0, u = u1v1 · · · ukvk, v = v1 · · · vk,

ui, vi ∈ �,1� i�k}, with�l
bl = ��bl.

If x andy are symbols in{l, r,′ }, the notation♦xy represents the operation(♦x)y . The
following identities between operations of the form♦xy have been established
in [13]:

♦ll = ♦rr = ♦ ′′ = ♦,

♦′l = ♦r′ = ♦lr .

For the composition and inversion of more complicated word operations, the following
notations and technical results will be helpful.

Definition 3.2. Let x, x1, x2, y, y1, y2 ∈ �∗ and let♦1,♦2 be binary word operations.We
define the composed operations(♦1 ;♦2) and(♦1 : ♦2) as follows:
(i) x(♦1 ;♦2)(y1 ; y2) = (x♦1 y1)♦2 y2,
(ii) (x1 : x2)(♦1 : ♦2)y = x1♦1(x2♦2 y).

We note that(♦1 ;♦2) and(♦1 : ♦2) are not binary word operations in the above sense,
but they can be viewed as special ternary operations over words.

Lemma 3.3. (i) (x1 : x2)(♦1 : ♦2)y = y(♦′2 ;♦′1)(x2 ; x1),
(ii) x(♦1 ;♦2)l(y1 ; y2) = x(♦l

2 ;♦l
1)(y2 ; y1),

(iii) (x1 : x2)(♦1 : ♦2)ry = (x2 : x1)(♦r
2 : ♦r

1)y.

Proof.
(i) (x1 : x2)(♦1 : ♦2)y =x1♦1(x2♦2 y)= (x2♦2 y)♦′1 x1= (y♦′2 x2)♦′1 x1=y(♦′2 ;♦′1)

(x2 ; x1).
(ii) The statement has been proven in[13].

(iii) y ∈ (x1 : x2)(♦1 : ♦2)rz iff z ∈ (x1 : x2)(♦1 : ♦2)y iff

z ∈ y(♦′2 ;♦′1)(x2 ; x1) iff y ∈ z(♦′2 ;♦′1)l(x2 ; x1) iff
y ∈ z(♦′l1 ;♦′l2)(x1 ; x2) iff y ∈ z(♦r′

1 ;♦r′
2 )(x1 ; x2) iff

y ∈ (z♦r′
1 x1)♦r′

2 x2 iff y ∈ x2♦r
2(x1♦r

1 z) iff

y ∈ (x2 : x1)(♦r
2 : ♦r

1)z. �
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Nowwe introduce thegeneralizingconceptofwordoperationson trajectories[4,15,16,19].
Consider atrajectory alphabetV = {0,1} and assumeV ∩ � = ∅. We calltrajectoryany
string t ∈ V ∗. A trajectory is essentially a syntactical condition which specifies how an
operation♦ is applied to the letters of its two operands. Lett ∈ V ∗ be a trajectory and let
�, 	 be two words over�.

Definition 3.4. The shuffle of� with 	 on the trajectoryt , denoted by���t 	, is defined
as follows:

���t 	 = {�1	1 . . . �k	k | � = �1 . . . �k, 	 = 	1 . . .	k, t = 0i11j1 . . .0ik1jk ,
where|�m| = im and|	m| = jm for all m, 1�m�k}.

Example 3.5. Let � = a1a2 . . . a8, 	 = b1b2 . . . b5 and assume thatt = 03120310101.
The shuffle of� and	 on the trajectoryt is

���t 	 = {a1a2a3b1b2a4a5a6b3a7b4a8b5}.

Notice that the above definition implies���t 	 = ∅ if |�| �= |t |0 or |	| �= |t |1. Analo-
gously, deletion on a trajectory is defined.

Definition 3.6. The deletion of	 from � on the trajectoryt is the following binary word
operation:

��t	 = {�1 . . . �k | � = �1	1 . . . �k	k, 	 = 	1 . . .	k,t = 0i11j1 . . .0ik1jk ,
where|�m| = im and|	m| = jm for all m, 1�m�k}.

Example 3.7. Let � = babaab, 	 = bb and assume thatt = 001001. The deletion of	
from � on the trajectoryt is

��t	 = {baaa}.

Notice also that for given�, 	, t we have always card(���t 	)�1, card(��t	)�1.
A set of trajectoriesis any setT ⊆ V ∗. Theshuffle(deletion) of � with 	 on the setT ,

denoted by���T 	 (��T 	), is

�♦T 	 = ⋃
t∈T

�♦t 	, (2)

where♦ stands for�� or �, respectively. The operations��T and�T generalize to
languages due to the general principle (1). Some basic operations of sequential deletion of
words and languages are particular cases of the shuffle or deletion on trajectories.
• Let T = 0∗1∗. Then��T = ·, the catenation, and�T = −→rq, the right quotient.
• Let T = 1∗0∗. Then��T = ·′, the reversed catenation, and�T = −→lq, the left
quotient.

• ForT = V ∗ we have��T = �� and�T = �.
• Let T = (01)∗. Then��T = ��bl and�T = �bl.
The following results are proven in[4,15,16,19] or follow directly by proof techniques used
ibidem.
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Lemma 3.8. Let T be a set of trajectories. Then
(i) ��l

T = �T and��r
T = �′̃

T
,

(ii) �l
T = ��T and�r

T = �T̃ ,
whereT̃ is the set of trajectories obtained by replacing all0’s for1’s and vice versa in all
the trajectories ofT .

Lemma 3.9. Let T be a set of trajectories. The following assertions are equivalent:
(i) For all regular languagesL1, L2, L1��T L2 is a regular language.
(ii) T is a regular language.

Lemma 3.10. For all regular languagesL1, L2, and a regular set of trajectoriesT ,
L1�T L2 is a regular language.

4. Bond-free DNA languages

Most of the DNA language properties defined in Section2 are intended to prevent un-
wanted bonds between two distinct DNA strands. These strands need not be perfect comple-
ments of each other, but they may also contain some blunt ends or other slight differences.
Word operations on trajectories prove useful when looking for a general approach to vari-
ous types of properties which differ by type of bonds and free ends, see Fig. 3. Formally,
a propertyP is a mappingP : 2�∗ −→ {true, false}. We say that a languageL has (or
satisfies) the propertyP if P(L) = true.

Definition 4.1. A language propertyP is called abond-free property of degree 2if there
exist binary word operations♦lo,♦up and an involution� such that for an arbitraryL ⊆ �∗,
P(L) = true iff
∀w ∈ �+, x, y ∈ �∗, (w♦lo x ∩ L �= ∅, w♦upy ∩ �(L) �= ∅) ⇒ xy = �. (3)

Hence each DNA language property based on bonds oftwosingle DNA strands, that can
be expressed in the form (3), is called abond-free property of degree2. In the remainder of
this paper we write simplybond-free propertyfor bond-free property of degree two.
Intuitively,w and�(w)are complementary parts of the lower and theupper strand, respec-

tively. The operations♦lo and♦up add free “sticky” ends to these complementary parts,
producing a complete lower and upper strand, respectively. These strands adopt specific
forms as those described in Fig. 3. In most cases of interest the operations♦lo, ♦up adopt
a more specific form. Particularly, in this and the following section we assume that

♦lo = ��Tlo , ♦up = ��Tup

for some trajectory setsTlo, Tup ⊆ V ∗.

Theorem 4.2. The language properties(B), (C), (D), (G), (H), (I), (M.1), (M.2)are bond-
free properties. Moreover, the associated sets of trajectoriesTlo, Tup are regular.
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Proof. Assume that� is an antimorphism and define the sets of trajectoriesTlo, Tup as
follows:
(B) Tlo = 0+, Tup = 1∗0+1∗.
(C) Tlo = 0+, Tup = 1∗0+.
(D) Tlo = 0+, Tup = 0+1∗.
(G) Tlo = 0+1∗, Tup = 0+1∗.
(H) Tlo = 0+1∗, Tup = 1∗0+.
(I) Tlo = 1∗0+, Tup = 0+1∗.
Consider e.g. the property (H),�-3′-overhang-freedom. Thenw ��Tlo x = {wx} and

w ��Tup y = {yw}. The relations in (3) take the formwx ∈ L, yw ∈ �(L). This is
equivalent towx ∈ L, �(w)�(y) ∈ L. As xy = � iff x�(y) = �, (3) corresponds
to the definition of (H) in Section 2. The proofs of the other mentioned properties are
analogous.
If � is a morphism, then all the sets of trajectoriesTup must be replaced by the reversed

setsT R
up and we obtain�(wy) = �(w)�(y), the rest of the proof remaining unchanged. As

the property (M) is defined only for� = I , the identity on�∗, one can easily verify that, in
this case,
(M.1) Tlo = 0∗, Tup = 1∗0∗1∗.
(M.2) Tlo = 1∗0+, Tup = 0+1∗. �

Observe thatTlo, Tup for a certain property corresponds to the “shape” of the bonds
prohibited in languages satisfying the property. This correspondence can be even enhanced

by the concept ofDNA trajectories—strings over the alphabetVDNA =
{(

b
b

)
,
(
f
f

)
,
(f
�

)
,
(�
f

)}
.

In this notationb stands for a bonded letter andf for a free letter in a DNA sequence.
Let
up,
lo : VDNA −→ V be morphisms defined as follows:


up
((

b
b

)) = 0, 
up
((

f
f

)) = 
up
((f

�

)) = 1, 
up
((�

f

)) = �,


lo
((

b
b

)) = 0, 
lo
((

f
f

)) = 
lo
((�

f

)) = 1, 
lo
((f

�

)) = �.

For any bond-free property associated with a pair of setsTlo, Tup we construct the set of
DNA trajectoriesSas follows:

S = {s ∈ V ∗
DNA |
lo(s) ∈ Tlo, 
up(s) ∈ Tup}.

For the properties (B), (C), (D), (G), (H), (I) we obtain the following sets ofDNA trajectories
(compare with Fig.3):

(B) �-compliant: SB =
(f
�

)∗(b
b

)+(f
�

)∗
(C) �-p-compliant: SC =

(f
�

)∗(b
b

)+
(D) �-s-compliant: SD =

(
b
b

)+(f
�

)∗
(G)�-sticky-free: SG =

(
b
b

)+(
f
f

)∗ ((f
�

)∗ ∪ (�
f

)∗)
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(H) �-3′-overhang-free: SH =
(f
�

)∗(b
b

)+(�
f

)∗
(I) �-5′-overhang-free: SI =

(�
f

)∗(b
b

)+(f
�

)∗
As the following result shows, the DNA trajectories allow us to establishmutual relations

between DNA language properties easily. For a set of DNA trajectoriesSand a language
L ⊆ �∗, denote

LS = {xy ∈ �∗ |w ��
lo(S) x ∩ L �= ∅, w ��
up(S) y ∩ �(L) �= ∅, w ∈ �+}. (4)

Denote further byPS a bond-free property associated with the set of DNA trajectoriesS.
Comparing with Definition4.1, one can observe thatPS(L) = true for a languageL ⊆ �∗
iff LS ⊆ {�}.
Let P be a language property, denote byC(P) the set of all languages satisfyingP.

In other words,C(P) = {L |P(L) = true}. The following theorem establishes relations
among bond-free properties.

Theorem 4.3. LetS1, S2 be sets of DNA trajectories.
(i) S1 ⊆ S2⇒ C(PS1) ⊇ C(PS2),
(ii) S ⊇ S1 ∪ S2⇒ C(PS) ⊆ C(PS1) ∩ C(PS2),
(iii) S ⊆ S1 ∩ S2⇒ C(PS) ⊇ C(PS1) ∪ C(PS2).

Proof. Observe first that (4) can be rewritten as

LS = ⋃
s1,s2∈S

{xy ∈ �∗ |w ��
lo(s1) x ∈ L, w ��
up(s2) y ∈ �(L), w ∈ �+}. (5)

(i) For eachL ⊆ �∗, (S1 ⊆ S2) ⇒ (LS1 ⊆ LS2) ⇒ (LS2 ⊆ {�} ⇒ LS1 ⊆ {�}) ⇒
(PS2(L) = true⇒ PS1(L) = true)⇒ (C(PS2) ⊆ C(PS1)).

(ii) By (5), (S ⊇ S1 ∪ S2) ⇒ (LS ⊇ LS1 ∪ LS2) ⇒ (LS ⊆ {�} impliesLS1 ⊆ {�}
andLS2 ⊆ {�}) ⇒ (PS(L) = true impliesPS1(L) = true andPS2(L) = true)⇒
(C(PS) ⊆ C(PS1) ∩ C(PS2)).

(iii) By (i), ( S ⊆ S1 ∩ S2)⇒ (S ⊆ S1 andS ⊆ S2)⇒ (C(PS) ⊇ C(PS1) andC(PS) ⊇
C(PS2))⇒ (C(PS) ⊇ C(PS1) ∪ C(PS2)). �

Hence, for properties (X) and (Y) associated with the trajectory setsSX andSY, SX ⊆ SY
implies (Y) is stronger than (X). For example, ifL is �-compliant, then it is both�-p-
compliant and�-s-compliant, asSC ∪ SD ⊆ SB.
Themain reason for introducingDefinition4.1 is the characterizationof bond-freeproper-

ties via language inequations.This unified approachallowsus to answer important questions
regarding these properties, e.g., decidability and maximality questions as shown below.

Theorem 4.4. There exist fixed regular sets of trajectoriesT1, T2 ⊆ V ∗ and regular lan-
guagesK1,K2 ⊆ (� ∪ V )∗ such that for a bond-free propertyP associated with sets of
trajectoriesTlo andTup, P(L) = true holds for anL ⊆ �∗ iff

((L��bl Tlo)��T1(�(L)��bl Tup))�T2K1 ⊆ K2. (6)
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Proof. Let T1 = {00,11,0101}∗, T2 = {00,1111}∗, K1 =
(⋃

a∈� {aa00}
)+ andK2 =

(� ∪ V )∗0(� ∪ V )∗ ∪ {�}.
(i) Assume thatP(L) = false for a languageL ∈ �∗. Then there isxy,w ∈ �+ such that

w ��tlo x ∈ L, w ��tup y ∈ �(L) for sometlo ∈ Tlo, tup ∈ Tup. Denote

u1=w ��tlo x, (7)

u2=w ��tup y. (8)

Letw = a1 . . . am, x = b1 . . . bn, y = c1 . . . cp, for ai, bj , ck ∈ �,m > 0,n+p > 0.
Then

u1��bl tlo = z1z2 . . . zm+n such thatzi = aji0 or zi = bki1,

1� i�m+ n, ji = |z1 . . . zi |0, ki = |z1 . . . zi |1, (9)

u2��bl tup= z1z2 . . . zm+p such thatzi = aji0 or zi = cki1,

1� i�m+ p, ji = |z1 . . . zi |0, ki = |z1 . . . zi |1. (10)

DenoteL′ = (L��bl Tlo)��T1(�(L)��bl Tup). As u1 ∈ L andu2 ∈ �(L), clearly

(u1��bl tlo)��T1(u2��bl tup) ⊆ L′.

ThenL′ must contain a wordv of the form

v = z1z2 . . . zm+n+p such thatzi = aji aji00 orzi = bki1 or zi = cli1,

1� i�m+ n+ p, 1�ji�m, 1�ki�n, 1� li�p.

Consequently,L′�T2K1 must contain a wordzof the form

z = z1z2 . . . zn+p such thatzi = bki1 or zi = cli1,

1� i�n+ p, 1�ki�n, 1� li�p.

As n+ p > 0, z /∈ K2 and hence (6) does not hold.
(ii) Assume that (6) does not hold, then there is a non-emptywordzinL′�T2K1 containing

no symbol 0. Notice that all the words inL′�T2K1 are in(� · V ∪ �2 · V 2)∗. Denote
� = � · 1∪ �2 · 12, then we havez ∈ �+.
Consequently, there is av ∈ L′ such thatz ∈ v�T2K1. As�T2 is the left inverse of
��T2, we havev ∈ z��T2 K1, and hence

v ∈ �+ ��T2 K1. (11)

Furthermore,v ∈ v1��T1 v2 for somev1 ∈ L��bl Tlo andv2 ∈ �(L)��bl Tup. All the
parts ofv of the formaa00 (belonging toK1 due to (11)) have to be produced from
v1, v2 via the 0101 parts of a trajectoryt1 ∈ T1. Then the symbols from� immediately
preceding 0’s inv1 andv2 must form two identical strings. In other words,v1 andv2
must adopt the form of the right-hand sides of (9) and (10), respectively.
Inevitably, there must existw, xy ∈ �+, tlo ∈ Tlo, tup ∈ Tup such that (7), (8), (9), (10)
all hold. It follows thatw ��tlo x ∈ L, w ��tup y ∈ �(L), xy �= �, xy ∈ LS , and hence
P(L) = false. �
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Corollary 4.5. For each bond-free propertyP there is a binary word operation�P such
thatP(L) = truefor anL ⊆ �∗ iff

L�PL ⊆ K2.

Proof. By Theorem4.4, we define

x�Py = ((x ��bl Tlo)��T1(�(y)��bl Tup))�T2K1. � (12)

The above characterization of bond-free language properties allows us to answer decid-
ability questions “IsP(L) = true for a given languageL and a propertyP?” To measure
the complexity of these decision problems, we need to introduce some further concepts of
formal language theory first.
A non-deterministic finite automaton (NFA) with� productions (or transitions), a�-NFA

for short, is a quintupleA = (S,�, s0, F, P ) such thatS is the finite and non-empty set
of states,s0 is the start state,F is the set of final states, andP is the set of productions of
the formsx → t , wheresandt are states inS, andx is either a symbol in� or the empty
word. If there is no production withx = �, the automaton is called an NFA. If for every
two productions of the formsx1→ t1 andsx2→ t2 of an NFA we have thatx1 �= x2 then
the automaton is called a deterministic finite automaton (DFA). The language accepted by
the automatonA is denoted byL(A). Thesize|A| of A is the number card(S)+ card(P ).
LetA1,A2 be NFAs and let� be an involution. Then there are NFAs of the sizeO(|A1| ·

|A2|) accepting the languagesL(A1)∪L(A2) andL(A1)∩L(A2). The language�(L(A1))

can be accepted by an NFA of the size|A1|. Similarly, if A1, A2 are DFAs, then there are
DFAs of the sizeO(|A1|·|A2|) accepting the languagesL(A1)∪L(A2) andL(A1)∩L(A2).
The languageL(A1)

c can be accepted by a DFA of the size|A1|.We refer the reader to[22]
or [23] for further details on automata and formal languages. The following lemma follows
by results in [4,15,19].

Lemma 4.6. LetL1,L2 and T be regular languages accepted by the NFAsA1,A2 andAT ,
respectively.
(i) There exists an NFA A acceptingL1��T L2 of the size|A| = O(|A1| · |A2| · |AT |),

constructible in time|A|.
(ii) There exists a�-NFAA′ acceptingL1�T L2 of the size|A′| = O(|A1| · |A2| · |AT |),

constructible in time|A′|.

Theorem 4.7. LetP be a bond-free property associated with regular sets of trajectories
Tlo, Tup. Then the following problem is decidable in quadratic time:
Input: an NFAA.
Output:Yes/No depending on whetherL(A) satisfiesP.

Proof. By (12) and repeated applications of Lemmata 3.9, 3.10, 4.6 we can construct a
�-NFAA′ acceptingL(A)�PL(A) in timeO(|A|2), asTlo, Tup andK1 are fixed. Then due
to Corollary 4.5 it is enough to test the emptiness of the languageL(A′) ∩ Kc

2. AsK2 is
fixed and the size ofA′ isO(|A|2), this requires alsoO(|A|2) steps. �
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The decidability problems of some DNA properties were studied in[7], where the
decidability of the properties (D) and (F) was shown. In [5] the decidability of (M) in
quadratic time is proven. In [8] an algorithm deciding (F) in quadratic time for finite
sets of codewords is presented. The following corollary generalizes all these previous
results into a uniform quadratic-time decidability procedure for all regular sets of
codewords.

Corollary 4.8. The following problem is decidable in quadratic time w.r.t.|A|:
Input: an NFAA.
Output:Yes/No depending on whetherL(A) satisfies any of the properties(B),

(C), (D), (G), (H), (I), (J) (M).

It is known that for some bond-free properties there is no algorithm which would decide
whether a given context-free languageL satisfies the property. The corresponding statement
has been proven in[7] for the case of the properties (B) and (F), where the alphabet isfixed
and equal to{A,C,G, T }.

Corollary 4.9. The following problem is undecidable.
Input:A bond-free propertyP associated with regular sets of trajectoriesTlo,

Tup, and a context-free languageL.
Output:Yes/No depending on whetherP(L) = true.

5. Maximal bond-free languages

In the previous section we introduced the characterization of bond-free properties via
language inequations. Now we show that this approach may be applied also to maximality
problems (“IsL maximal w.r.t. a bond-free propertyP?”). If L satisfyingP is not maxi-
mal, we can also give a formula characterizing an extended languageL′ ⊇ L which still
satisfiesP.
To study these topics in detail, first somemore technical results are needed. The following

notion of maximal solutions to language inequations and of residue of the solution appears
in [13]. Let L,M ⊆ �∗ be two languages and let♦ be a binary word operation. The
languageM represents the set of all applicable/constructible DNA strands in a case at hand.
Consider an inequation of the form

X♦L ⊆ Xc, X ⊆ M. (13)

The languageSmax is amaximal solutionof (13) if Smax is a solution (i.e., (13) holds true
for X = Smax), and for eachx ∈ M − Smax, Smax∪ {x} is not a solution.
LetSbe a solution of (13). We call the language

R = M − (S ∪ S♦L ∪ S♦l L)

the residueof S. The following theorem is a refinement of Proposition 6.2 in[13]. In the
proof we use the fact thatSis a solution of (13) if and only if it is a solution ofX♦l L ⊆ Xc,
for X ⊆ M.
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Theorem 5.1. Let S be a solution of(13), let R be the residue ofS, and letQ = {z ∈
�∗ | z ∈ z♦L}. Then S is maximal iffR −Q = ∅.

Proof.
“⇒” Suppose thatS is maximal but there exists a wordz ∈ R −Q. Let T = S ∪ {z}. We

show thatT is a solution of (13), that is,t ♦L ⊆ T c for all t ∈ T . As z ∈ R −Q, we
have thatz ∈ M andz /∈ S, z /∈ S♦L, z /∈ S♦l L, z /∈ z♦L.
• If t ∈ S, thenz /∈ t ♦L due to the above, and furthermoret ♦L ⊆ Sc, asS is a
solution of (13). Hence,t ♦L ⊆ T c = Sc − {z}.

• If t = z, then againz /∈ z♦L andz /∈ S♦l L due to the above, hencet ♦L ⊆ T c.
Thus,T ♦L ⊆ T c, henceT is a solution of (13) strictly containingS, a contradiction.

“⇐” Suppose thatR −Q = ∅ butS is not maximal, i.e.,T = S ∪ {z} is a solution of (13)
for somez ∈ M − S. Then,z♦L ⊆ T c, S♦L ⊆ T c andS♦l L ⊆ T c. This implies
z /∈ z♦L (and hencez /∈ Q), z /∈ S♦L andz /∈ S♦l L. But asz ∈ M − S, we have
z ∈ M − (S ∪ S♦L ∪ S♦l L)−Q, hencez ∈ R −Q, a contradiction again.�

The following result from [13] explains the connection of inequation (13) with the max-
imality of bond-free languages.

Lemma 5.2. The inequationX�PX ⊆ K2withX ⊆ M ⊆ �+ is equivalent toX�r
PKc

2 ⊆
Xc withX ⊆ M ⊆ �+.

Theorem 5.3. LetP be a bond-free property andM ⊆ �+ a set of words. For a language
L ⊆ M satisfyingP, denote

R =M − (L ∪ L�r
PKc

2 ∪Kc
2�l

PL), (14)

Q= {z ∈ �∗ | z�Pz ∩Kc
2 �= ∅}, (15)

where�P is defined by(12)andK2 as in Theorem4.4.Then L is a maximal subset of M
satisfyingP iff R −Q = ∅.

Proof. Follows by Definition 3.1, Corollary 4.5, Theorem 5.1 and Lemma 5.2.�

To construct an algorithm deciding the maximality of bond-free DNA languages due to
the above theorem, we need to calculate the inverses of the operation�P .

Lemma 5.4. Let�P be a word operation defined by(12).Then
(i) z�l

Py = ((z��T2 K1)�T1(�(y)��bl Tup))�blTlo,
(ii) x�r

Pz = �(((z��T2 K1)�T̃1
(x ��bl Tlo))�blTup).

Proof. All the following manipulations are based on repeated application of Definitions
3.1, 3.2 and Lemmata 3.3, 3.8.
(i) z ∈ x�Py iff

z ∈ ((x ��bl Tlo)��T1(�(y)��bl Tup))�T2K1 iff
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z ∈ (x (��bl ; ��T1) (Tlo ; �(y)��bl Tup))�T2K1 iff

z ∈ (x (�T1 ;�bl)
l (�(y)��bl Tup ; Tlo))�T2K1 iff

z ∈ x ((�T1 ;�bl)
l ;�T2) ((�(y)��bl Tup ; Tlo) ;K1) iff

z ∈ x (��T2 ;(�T1 ;�bl))
l (K1 ;(�(y)��bl Tup ; Tlo)) iff

x ∈ z (��T2 ;(�T1 ;�bl)) (K1 ;(�(y)��bl Tup ; Tlo)) iff

x ∈ (z��T2 K1) (�T1 ;�bl) (�(y)��bl Tup ; Tlo) iff

x ∈ ((z��T2 K1)�T1(�(y)��bl Tup))�blTlo iff

x ∈ z�l
Py.

(ii) z ∈ x�Py iff

z ∈ ((x ��bl Tlo)��T1(�(y)��bl Tup))�T2K1 iff

z ∈ K1�′
T2

((x ��bl Tlo)��T1(�(y)��bl Tup)) iff

z ∈ (K1 : x ��bl Tlo) (�′
T2
: ��T1) (Tup��′bl �(y)) iff

z ∈ ((K1 : x ��bl Tlo) : Tup) ((�′
T2
: ��T1) : ��′bl) �(y) iff

�(y) ∈ ((K1 : x ��bl Tlo) : Tup) ((�′
T2
: ��T1) : ��′bl)r z iff

�(y) ∈ (Tup :(K1 : x ��bl Tlo)) (��′rbl :(�′
T2
: ��T1)

r ) z iff

�(y) ∈ Tup��′rbl((K1 : x ��bl Tlo) (�′
T2
: ��T1)

r z) iff

�(y) ∈ Tup��l′
bl((x ��bl Tlo :K1) (��r

T1
:�l′

T2
) z) iff

�(y) ∈ ((x ��bl Tlo)��r
T1

(K1�l′
T2

z))��l
bl Tup iff

�(y) ∈ ((x ��bl Tlo)��r
T1

(z��T2 K1))�blTup iff

y ∈ �(((z��T2 K1)�T̃1
(x ��bl Tlo))�blTup) iff

y ∈ x�r
Pz. �

Theorem 5.5. Let � be an antimorphism and letP be one of the properties(B), (C),
(D), (G). Let M ⊆ �+ be a regular set of words, and L ⊆ M a regular language
satisfyingP. Then there is an algorithm deciding whether L is a maximal subset of M
satisfyingP.

Proof. By Theorem5.3 it suffices to test whetherR −Q = ∅, whereR andQ are given
by (14) and (15), respectively. Recall thatM, L andK2 are regular languages and�P is
defined by (12). By Lemmata 3.9, 3.10, 5.4 we can construct an NFA acceptingR.
By (15) and Corollary 4.5,Q is the set of all wordsz such that the language{z} does

not satisfy the studied property—one of (B), (C), (D), (G). By definition of these properties
in Section 2, one can observe that for (B), (C), (D) we haveQ = ∅. In the case of (G),
Q = ⋃

a∈�(a�∗�(a)). In all these casesQ is a regular language and hence the question
“R −Q = ∅?” is effectively decidable. �
Theorem 5.6. Let � be a morphism and letP be one of the properties(B), (C), (D), (H),
(I). LetM ⊆ �+ be a regular set of words, andL ⊆ M a regular language satisfyingP.
Then there is an algorithm deciding whether L is a maximal subset of M satisfyingP.
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Proof. As in the above proof, the statement can be reduced to decidingwhetherR−Q = ∅,
whereR is a regular language. For the properties (B), (C), (D) we have againQ = ∅. Denote
� = {a ∈ � | a = �(a)}, then in the case of (H) we haveQ = ��+ and in the case of (I),
Q = �+�. In all these casesQ is also regular and the problem is decidable.�

Notice the difference between Theorems5.5 and 5.6. For instance, if� is a morphism as
in Theorem 5.6 and we consider the property (G), thenQ is a context-sensitive language
{x�∗�(x) | x ∈ �+}. Therefore (G) is not mentioned in Theorem 5.6 as the question “R −
Q = ∅?” might be undecidable.
LetA be a DFA acceptingL. The procedure described in the two above proofs involves

applying operations onA that result in an NFA and then taking the complement of that
NFA. This process may require an exponential number of steps w.r.t.|A| in the worst case.
However, as the following theorem shows, we can obtain a polynomial-time algorithm at
least for finite languages.

Lemma 5.7. Let L and M be two languages such thatL ⊆ M and L satisfies the property
(B). Let R be the set defined in Theorem5.3and� be an involution. Then,

R = M − (L ∪ �∗�(L)�+ ∪ �+�(L)�∗ ∪ Sub′(�(L))).

whereSub′(L) is the set of all proper subwords of L.

Proof. As L satisfies property (B), Corollary4.5 implies thatL is a solution ofL�PL ⊆
K2, wherex�Py is defined in (12). Moreover, by the definition ofSB, it follows that
Tup = 1∗0+1∗ andTlo = 0+. By Lemma 5.4 we have that

Kc
2�l

Py = ((Kc
2 ��T2 K1)�T1(�(y)��bl 1∗0+1∗))�bl0

+

�(x�r
PKc

2)= ((Kc
2 ��T2 K1)�T̃1

(x ��bl 0+))�bl1
∗0+1∗,

whereK1, T1 andT2 are defined in Theorem 4.4. As the languageR is a subset of�∗, we
restrict our attention to the sets(L�r

PKc
2)∩�∗ and(Kc

2�l
PL)∩�∗. In particular we show

next that�(x�r
PKc

2) ∩ �∗ = �∗x�+ ∪ �+x�∗ and(Kc
2�l

Py) ∩ �∗ = Sub′(�(y)).
Let f be a word in�(x�r

PKc
2)∩�∗. First note thatKc

2 ��T2 K1 consists of wordsw of the
formw0v1w1 · · · vnwn, where eachwi is either empty or in(�∪{1})2, and eachvj is either
empty or of the formbjbj00, withbj ∈ �. Also, the setx ��bl 0+ is equal to{u}, with u
being of the forma10 · · · am0, where theai ’s are the symbols ofx. Thenf ∈ z2�bl1∗0+1∗,
wherez2 is a word inw�t u with t ∈ T̃1. Thusz2 must be of the form

x11 · · · xi−11xi0 · · · xi+j−10xi+j1 · · · xk1

with k�1,1� i�k, j�1 and eachxl being in�. One can verify that for every non-empty
subwordwi of w the corresponding subword of the trajectoryt must be 00 and, for every
non-empty subwordvj of w, the corresponding subword oftmust be 1010. Hence,j = m

and xi+r = ar+1 for all r = 0, . . . , m − 1. Moreover, as� is not inKc
2, at least one

subwordwi of w is non-empty. Hence,z2 is of the formu1a10 · · · am0u2 for some words
u1, u2 ∈ � ∪ {1} with u1u2 �= �, and thereforef must be in�∗x�+ ∪ �+x�∗.
Now observe thatx�r

PKc
2 is equal to�

+
1 ←− �(x), where←− is the insertion operation

and�1 = � ∪ {1}. One verifies thatx ∈ y�rl
PKc

2 if and only if x ∈ �(y) ⇀↽ �+1 and,
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therefore, as�rl
P = �l′

P , (K
c
2�l

Py) = �(y) ⇀↽ �+1 . Moreover, asy ∈ �∗, we have that
�(y) ⇀↽ �+1 = �(y) ⇀↽ �+1 ∩ �∗, which is equal to Sub′(�(y)). �

Theorem 5.8. The following problem is decidable in timeO(‖L‖3|A|), where‖L‖ is the
quantity

∑
w∈L |w|.

Input: DFA A and a finite language L such thatL ⊆ L(A) and L satisfies the pro-
perty(B).
Output:Yes/No, depending on whether L is a maximal subset ofL(A) satisfying(B).

Proof. Let M = L(A) and letR1 = L ∪ �∗�(L)�+ ∪ �+�(L)�∗ ∪ Sub′(�(L)). By
Theorem5.3 and Lemma 5.7, to decide whetherL is maximal, it is sufficient to test whether
the languageM∩Rc

1 is empty—recall from the previous theorem that the setQ for property
(B) is empty. LetR2 = L ∪ Sub(�(L)) ∪ �∗�(L)�∗. One verifies thatR2 = R1 ∪ �(L),
which is equivalent toRc

2 = Rc
1∩ �(L)c. This implies thatRc

1 = (Rc
1∩ �(L))∪Rc

2. Hence,
M ∩ Rc

1 is empty if and only ifM ∩ Rc
2 is empty andM ∩ Rc

1 ∩ �(L) is empty.
The algorithm consists of the following steps.

1. Construct DFAsA0, A1 andA2 accepting the languagesL,Sub(�(L)) and�∗�(L)�∗,
respectively.

2. Use a product construction onA0, A1 andA2 to obtain a complete DFAA3 accepting
R2, and then consider the DFAAc

3 acceptingR
c
2.

3. Use a product construction onAc
3 andA to obtain a DFAA4 accepting the language

M ∩ Rc
2.

4. Output No and quit, if there is a path from the start state to a final state ofA4.
5. For eachw ∈ L, if �(w) is inM and�(w) is not inL and�(w) is not in Sub′(�(L)) and

�(w) is not in�∗�(L)�+ ∪ �+�(L)�∗, output No and quit.
6. OutputYes.
The DFAA0 is the trie corresponding toL and can be constructed in timeO(‖L‖) [3].
The DFAA1 is the factor automaton accepting Sub(�(L)) and can be constructed in time
O(‖L‖) [3]. The DFAA2 can be constructed fromL in timeO(‖L‖) as well, by modifying
the construction of the dictionary matching DFA accepting�∗�(L) [13]. It follows now
that |Ac

3| = |A3| = O(‖L‖3) and|A4| = O(‖L‖3|A|). The fourth step of the algorithm
requires time proportional to the size ofA4.
For the fifth step, we note the following. For each wordw in L, testing whether�(w)

is not inL can be done in timeO(‖L‖), and testing whether�(w) is inM can be done in
timeO(|w|) by running the DFAA on input�(w). Hence, for allw, these two tests require
timeO(‖L‖2). Now we need to test, for eachw ∈ L, whether�(w) is not in Sub′(�(L))

and�(w) is not in�∗�(L)�+ ∪ �+�(L)�∗. This is equivalent to testing, for each word
u ∈ L with u �= w, whether the condition (�(w) is not a subword of�(u)AND �(u) is not
a subword of�(w)) is true. The question of whether a wordx is a subword of a wordy is
a pattern matching problem and can be solved in timeO(|x| + |y|) [3]. Hence, the overall
time for the remaining tests isO(‖L‖2). �

The language inequation approach can be used also for construction of extensions of
non-maximal bond-free DNA languages. The following result is a direct consequence of
Proposition 6.3 in [13].
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Theorem 5.9. LetP be a bond-free property andM ⊆ �+ a set of words. LetL ⊆ M be
a language satisfyingP. Denote

L1 = M ∩ (Kc
2�l

PL)c ∩ ((Kc
2�l

PL)c�r
PKc

2)
c,

L2 = M ∩ (L�r
PKc

2)
c ∩ (Kc

2�l
P (L�r

PKc
2)

c)c.

ThenL ⊆ Li ⊆ M andP(Li) = true, for i = 1,2.

Given a languageL satisfying a certain bond-free property, the above theorem allows us
to construct “larger” languages satisfying the same property and containingL. However, if
A is the NFA acceptingL, the procedure may require an exponential number of steps w.r.t.
|A| in the worst case.

6. Strictly bond-free languages

In this section we focus mostly on the strict versions of the DNA language properties
(B)–(L), i.e., their conjunctionswith (A).Aswealreadymentioned inSection2, the property
(E) is equal to strictly (B), hence we do not refer to (E) in the sequel. The motivation for the
following general concept of astrictly bond-freeproperty is the fact that the strict versions
of the above properties are its special cases. The property (A) itself is a special case of
strictly bond-freedom. For some choices of the operations♦lo,♦up below, however, the (A)
property need not necessarily hold. This is verified by the fact that (non-strictly) (L) is also
a special case of the strictly bond-free property.

Definition 6.1. A language propertyP is called thestrictly bond-free property of degree2
if there are binary word operations♦lo, ♦up and an involution� such that for an arbitrary
L ⊆ �∗, P(L) = true iff

∀w, x, y ∈ �∗ (w♦lo x ∩ L �= ∅, w♦upy ∩ �(L) �= ∅) ⇒ w = �. (16)

The formulationstrictly bond-free property of degree2 is used to stress the fact that
the property describes bonds oftwo single DNA strands. In the remainder of this pa-
per we write simplystrictly bond-free propertyfor the strictly bond-free property of
degree two.

Theorem 6.2. The language properties(A), strictly (B)–(D), strictly (G)–(I), (L), strictly
(L) are strictly bond-free properties.

Proof. Let ♦lo = ��Tlo and♦up = ��Tup, whereTlo andTup are the sets of trajectories
used in the proof of Theorem4.2. For the properties not studied in Theorem 4.2 we define
the sets of trajectoriesTlo, Tup as follows:

(A) Tlo = Tup = 0+,
(L) Tlo = Tup = 1∗0k1∗,
strictly (L) Tlo = Tup = 1∗0k1∗ ∪ 0+.
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Hence for the above-mentioned properties (16) adopts the form

∀w, x, y ∈ �∗ (w ��Tlo x ∩ L �= ∅, w ��Tup y ∩ �(L) �= ∅) ⇒ w = �. (17)

Consider first the properties strictly (A), strictly (B)–(D), strictly (G)–(I) for which we have
x ��Tlo � = x ��Tup � = x for eachx ∈ �+. Then (17) is equivalent to

∀w ∈ �+, x, y ∈ �∗, ¬(w ��Tlo x ∩ L �= ∅, w ��Tup y ∩ �(L) �= ∅) iff

∀w ∈ �+, (¬(w ��Tlo � ∩ L �= ∅, w ��Tup � ∩ �(L) �= ∅)
∧ (∀x, y ∈ �∗, xy �= �, ) ¬(w ��Tlo x ∩ L �= ∅, w ��Tup y ∩ �(L) �= ∅)) iff

∀w ∈ �+, ¬(w ∈ L,w ∈ �(L)) ∧ ∀w ∈ �+, x, y ∈ �∗,
¬(w ��Tlo x ∩ L �= ∅, w ��Tup y ∩ �(L) �= ∅, xy �= �) iff

L ∩ �(L) = ∅ ∧ ∀w ∈ �+, x, y ∈ �∗,
(w ��Tlo x ∩ L �= ∅, w ��Tup y ∩ �(L) �= ∅) ⇒ xy �= �,

which is further equivalent to strictly bond freedom by Definitions4.1, 6.1 and Theorem
4.2. The proof for (L) and strictly (L) is similar except that in the case of (L) we do not
obtain the conditionL ∩ �(L) = ∅. �

Our interest nowwill be to express the strictly bond-free language properties via language
inequations as in Section 4.

Theorem 6.3. LetP be a strictly bond-free property associated with operations♦lo,♦up.
For a languageL ⊆ �∗, P(L) = true iff

(L♦l
lo �∗)�1+(�(L)♦l

up�
∗) = ∅. (18)

Proof. Recall that due to Definition6.1,P(L) = true iff
∀w, x, y ∈ �∗, (w♦lo x ∩ L �= ∅, w♦upy ∩ �(L) �= ∅) ⇒ w = � iff

∀w, x, y ∈ �∗, (∃� ∈ L, � ∈ w♦lo x, ∃	 ∈ �(L),	 ∈ w♦upy) ⇒ w = � iff

∀w, x, y ∈ �∗, (∃� ∈ L,w ∈ �♦l
lo x, ∃	 ∈ �(L),w ∈ 	♦l

upy) ⇒ w = � iff

∀w, x, y ∈ �∗, w ∈ L♦l
lo x, w ∈ �(L)♦l

upy ⇒ w = � iff

∀w ∈ �∗, w ∈ L♦l
lo �∗, w ∈ �(L)♦l

up�
∗ ⇒ w = � iff

(L♦l
lo �∗) ∩ (�(L)♦l

up�
∗) ⊆ {�} iff

(L♦l
lo �∗)�1+(�(L)♦l

up�
∗) = ∅. �

As in Section4, we present a general result about effective decidability of the strictly
bond-free properties for a given regular languageL.

Theorem 6.4. Let P be a strictly bond-free property associated with operations♦lo =
��Tlo , ♦up = ��Tup, with regular sets of trajectoriesTlo, Tup. Then the following problem
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is decidable in quadratic time:
Input: an NFAA.
Output:Yes/No depending on whetherL(A) satisfiesP.

Proof. Due to Theorems4.2, 6.2, 6.3, a described strictly bond-free property can be ex-
pressed in the form

L′ = (L(A)��l
Tlo

�∗)�1+(�(L(A))��l
Tup

�∗) = ∅.
Then by Lemmata3.8, 3.10, 4.6, the�-NFA A′ acceptingL′ can be constructed in time
O(|A|2), and so is its size. Hence, testing whetherL(A′) = ∅ or not is limited by the same
time bound. �

Corollary 6.5. LetP be any of the properties(A), strictly (B)–strictly (D), strictly (G)–
strictly (J), (L), strictly (L). The following problem is decidable in quadratic time w.r.t.
|A|:
Input: an NFAA.
Output:Yes/No depending on whetherL(A) satisfiesP.

On the other hand, at least for some strictly bond-free properties there is no algorithm
to decide whether a given context-free language satisfies the property. We demonstrate this
fact for the�-non-overlapping property (A).

Theorem 6.6. For a given context-free language L it is undecidable whether L is�-non-
overlapping or not.

Proof. Let L1, L2 be two context-free languages. Let #,�(#) be symbols not in�; then
L = L1#�(#)�(L2) is also a context-free language. Clearly,L∩�(L) = ∅ iff L1∩L2 = ∅
which is undecidable. �

Corollary 6.7. The following problem is undecidable.
Input: A strictly bond-free propertyP associated with regular sets of
trajectoriesTlo, Tup, and a context-free languageL.
Output:Yes/No depending on whetherP(L) = true.

7. Maximal strictly bond-free languages

In the sequel we concentrate on maximality problems (“IsL ⊆ �∗ maximal with respect
to a strictly bond-free propertyP?”). For this purpose, we reformulate Theorem6.3 as
follows.

Theorem 7.1. For each strictly bond-free propertyP there is a binary word operation�· P
such that for a languageL ⊆ �∗, P(L) = true iff

L�· PL = ∅. (19)
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Proof. By Theorem6.3, forx, y ∈ �∗ we have

x�· Py = (x♦l
lo �∗)�1+(�(y)♦l

up�
∗). � (20)

We apply the techniques fromSection5 for studyingmaximal bond free languages. It fol-
lows that as a first step we need to calculate the left and right inverse of the
operation�· P .

Lemma 7.2. Let�· P be a word operation defined by(20).Then
(i) z�· l

Py = (z��1+(�(y)♦l
up�

∗))♦lo �∗,
(ii) x�· r

Pz = �(((x♦l
lo �∗)�0+z)♦up�∗).

Proof. All the following manipulations are based on repeated application of Definitions
3.1, 3.2 and Lemmata 3.3, 3.8.
(i) z ∈ x�· Py iff

z ∈ (x♦l
lo �∗)�1+(�(y)♦l

up�
∗) iff

z ∈ x (♦l
lo ;�1+) (�∗ ; �(y)♦l

up�
∗) iff

x ∈ z (♦l
lo ;�1+)

l (�∗ ; �(y)♦l
up�

∗) iff
x ∈ z (��1+ ;♦lo) (�(y)♦l

up�
∗ ;�∗) iff

x ∈ (z��1+(�(y)♦l
up�

∗))♦lo �∗ iff

x ∈ z�· l
Py.

(ii) z ∈ x�· Py iff

z ∈ (x♦l
lo �∗)�1+(�

∗ ♦l′
up�(y)) iff

z ∈ (x♦l
lo �∗ :�∗) (�1+ :♦l′

up) �(y) iff

�(y) ∈ (x♦l
lo �∗ :�∗) (�1+ :♦l′

up)
r z iff

�(y) ∈ (x♦l
lo �∗ :�∗) (�1+ :♦′rup)r z iff

�(y) ∈ (�∗ : x♦l
lo �∗) (♦′up :�0+) z iff

�(y) ∈ �∗ ♦′up((x♦l
lo �∗)�0+z) iff

y ∈ �(((x♦l
lo �∗)�0+z)♦up�∗) iff

y ∈ x�· r
Pz. �

In the rest of this section we denote� = {a ∈ � | a = �(a)}, a subalphabet of� such
that� is an identity over�. In the case of the DNA involution�, of course,� = ∅.

Theorem 7.3. The following problem is decidable in timeO((|A| · |A�| · |AM |)3).
Input:DFAsA,A� and an NFAAM such thatL(A) = �(L(A�)) ⊆ L(AM) and

L(A) is �-non-overlapping.
Output:Yes/No, depending on whetherL(A) is a maximal�-non-overlapping

subset ofL(AM).
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Proof. Similarly as in the proof of Theorem5.5, our problem can be reduced to testing
whetherR −Q = ∅, where

R =M − (L ∪ L�· r
P�∗ ∪ �∗�· l

PL), (21)

Q= {z ∈ �∗ | z�· Pz �= ∅} (22)

and�· P is defined by (20). For the�-non-overlapping property we have♦lo = ♦up =
��0+ by Theorem 6.2. Substituting into expressions in Lemma 7.2, we obtain after certain
conversions

L�· r
P�∗ = �∗�· l

PL = �(L).

HenceR = M − (L ∪ �(L)) and the NFA acceptingR can be constructed in the time
O(|A| · |A�| · |AM |).
By (22) and Theorem 7.1,Q is the set of all wordszsuch that the language{z} does not

satisfy the given propertyP.
Let � be an antimorphism. By definition of�-non-overlapping property in Section 2, one

can observe that

Q = {z ∈ �+ | z = �(z)} = {wa�(w) |w ∈ �+, a ∈ � ∪ {�}}.
The complement ofQ is

Qc = {xay | x, y ∈ �+, a ∈ � ∪ {�}, |x| = |y|, x �= �(y) or a �= �(a)} ∪ {�}.
BothQ andQc are context-free languages. Given a fixed PDA acceptingQc whose size is
constant, the PDA acceptingR − Q = R ∩ Qc has the sizeO(|A| · |A�| · |AM |). Then,
by Theorem 7.1 in[6], we can construct an equivalent context-free grammarG of the size
|G| = O((|A| · |A�| · |AM |)3). Finally, the algorithm described in [6], Section 7.4.3, testing
whetherL(G) = ∅, requires linear time with respect to|G|.
If � is amorphism, thenQ = �+ andQc = �∗(�−�)�∗∪{�}, a fixed regular language.

Then the problem is decidable in timeO(|A| · |A�| · |AM |) = O(|A|2 · |AM |). �

Lemma 7.4. Let � be an antimorphism, let k be a positive integer and let S be the set of
words u satisfying the conditionSubk(u) ∩ Subk(�(u)) �= ∅. Then,

S = {xwy�(w)z | x, y, z ∈ �∗, w ∈ �k}
∪ {xwa�(w)y | x, y ∈ �∗, a ∈ � ∪ {�}, w ∈ �"(k−|a|)/2#}.

Proof. First note thatu is in S iff u = xwz1 = x2�(w)z, for some wordsx, z1, x2, z, w
with |w| = k and|x|� |x2|. Then one of the following conditions holds.
• |xw|� |x2| andu = xwy�(w)z, for some wordy.
• |xw| > |x2| andu = xsvs′z, for some wordss, s′, v with w = sv, �(w) = vs′, and
|v| > 0.

In the first case,u is in S1 = {xwy�(w)z | x, y, z ∈ �∗, w ∈ �k}. In the second case we
show thatumust be inS2 = {xga�(g)z | x, z ∈ �∗, a ∈ �∪{�}, g ∈ �"(k−|a|)/2#}. Indeed,
as�(w) = �(v)�(s) = vs′, one has thatv = �(v) and s′ = �(s), which implies that
v = f a�(f ) for some wordf anda ∈ � ∪ {�}. As |sv| = |s| + 2|f | + |a| = k, it follows
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that|sf |�"(k−|a|)/2#–otherwise,|sf | < "(k−|a|)/2#would imply |f | < "(k−|a|)/2#
and|f | = k − |a| − |sf | > k − |a| − "(k − |a|)/2# = $(k − |a|)/2%, which is impossible.
Thusu is of the formxsf a�(f )�(s)z with |sf a|�"k/2#, which implies thatumust be in
S2. Hence,S ⊆ S1 ∪ S2.
For the converse inclusion, first note thatS1 ⊆ S. Moreover, every wordxga�(g)z in S2

can be written in the formxsf a�(f )�(s)z with |sf a�(f )| = k, by choosings = � and
f = g if k−|a| is even, ors ∈ � andg = sf if k−|a| is odd. Hence,S2 ⊆ S as well. �

Theorem 7.5. Let� be an antimorphism. LetP be any of the properties strictly(B)–strictly
(D), strictly (G), (L), strictly (L). LetM ⊆ �+ be a regular set of words andL ⊆ M a
regular language satisfyingP.Then there is an algorithm deciding whether L is a maximal
subset of M satisfyingP.

Proof. As in the above proof, the decision algorithm must test whetherR−Q = ∅, where
RandQ are defined by (21) and (22), respectively. AsM andL are regular languages, we
can construct an NFA acceptingRusing Lemmata 3.9, 3.10, 7.2.
• For the properties strictly (B), strictly (C), strictly (D) we haveQ = {wa�(w) |w ∈

�+, a ∈ � ∪ {�}}. As we have shown in the proof of Theorem7.3,Qc is a context-free
language and hence there is an algorithm to test whetherR −Q = R ∩Qc = ∅.

• For strictly (G),Q = ⋃
a∈�(a�∗�(a)), a regular language and hence again the question

“R −Q = ∅?” is decidable.
• For (L), Q = {z |Subk(z) ∩ Subk(�(z)) �= ∅}. DenoteQ = QL for further use. By
Lemma7.4,

QL = {xwy�(w)z | x, y, z ∈ �∗, w ∈ �k}
∪ {xwa�(w)y | x, y ∈ �∗, a ∈ � ∪ {�}, w ∈ �"k/2#}.

AsQL is regular, the problem is decidable.
• For strictly (L),

Q = QL ∪ {wa�(w) | |w| < "k/2#, a ∈ � ∪ {�}}.
AgainQ is regular and the problem is decidable.�

Similar results as above can be obtained in the case of� being a morphism, but again a
technical result analogous to Lemma7.4 is needed first.

Lemma 7.6. Let� be a morphism, let k be a positive integer and let S be the set of words
u satisfying the conditionSubk(u) ∩ Subk(�(u)) �= ∅. Then,

S = {xwy�(w)z | x, y, z ∈ �∗, w ∈ �k} ∪ �∗Z�∗ ∪ �∗�k�∗,

where

Z = {w�(w)�2(w) · · · �n(w)x |w ∈ �∗, x ∈ Pref(�n+1(w)), n�1, |wnx| = k}. (23)

Proof. DenoteS1 = {xwy�(w)z | x, y, z ∈ �∗, w ∈ �k},S2 = �∗�k�∗ andS3 = �∗Z�∗.
Then we can express our statement asS = S1∪S2∪S3. The same arguments as in the proof
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of Lemma7.4 show thatS1 ⊆ S. Obviously alsoS2 ⊆ S. Consider now a wordu ∈ S3,
then

u = vw�(w)�2(w) · · · �n(w)xy

for somev, y ∈ �∗, andw, x as in (23). Consequently,

�(u) = �(v)�(w)w�(w)�2(w) · · · �n−1(w)�(x)�(y).

As �(x) ∈ Pref(�n(w)), we can write

w�(w)�2(w) · · · �n−1(w)�(x) ∈ Subk(u) ∩ Subk(�(u)).
Hence, for eachu ∈ S3, Subk(u) ∩ Subk(�(u)) �= ∅ and thusS1 ∪ S2 ∪ S3 ⊆ S.
For the converse inclusion, assume thatu ∈ S butu /∈ S1∪S2.We show that thenu ∈ S3.

We can assume without loss of generality thatu = v1zy1, �(u) = v2zy2 such that|z| = k

and|v1|� |v2|. Then one can derive that|v1| < |v2| < |v1z|. (If |v1| = |v2|, thenu ∈ S2;
if |v2|� |v1z|, thenu ∈ S1.) Denotez = wz′ such that|w| = |v2| − |v1|, z′ ∈ �∗. Then

u = v1wz′y1,
�(u) = �(v1)�(w)wz′y2.

Suppose that|z′|� |w|, thenz′y1 = �(wz′y2) and hencez′ = �(w)z′′ for somez′′ ∈ �∗.
Let again|z′′|� |w|, similarly we can deduce thatz′′ = �2(w)z′′′ for somez′′′ ∈ �∗. By
induction, we get that

u = v1w�(w) · · · �n−1(w)z̃y1,

�(u) = �(v1)�(w)w�(w) · · · �n−1(w)z̃y2

for somen�1 and|z̃| < |w|. As z̃y1 = �(�n−1(w)z̃y2) = �n(w)�(z̃)�(y2), we getz̃ ∈
Pref(�n(w)) and we denotex = �(z̃) ∈ Pref(�n+1(w)). Therefore,

u = v1w�(w) · · · �n(w)x�(y2)

which concludes the proof.�

Theorem 7.7. Let � be a morphism. LetP be any of the properties strictly(B)–strictly
(D), strictly (H), strictly (I), (L), strictly (L). LetM ⊆ �+ be a regular set of words and
L ⊆ M a regular language satisfyingP. Then there is an algorithm deciding whether L is
a maximal subset of M satisfyingP.

Proof. As in the proof of Theorem7.5, we need to decide whetherR −Q = ∅, whereR
andQ are defined by (21) and (22), respectively, andR is a regular language.
• Using results of Theorem7.3, one can easily derive for the properties strictly (B), strictly
(C), strictly (D), thatQ = �+ and the problem is decidable.

• For strictly (H) or strictly (I),Q = ��∗ orQ = �∗�, respectively, both regular lan-
guages, and the problem is decidable.
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• For (L),Q = {z |Subk(z) ∩ Subk(�(z)) �= ∅}. DenoteQ = QL, for further use. By
Lemma7.6,

QL = {xwy�(w)z | x, y, z ∈ �∗, w ∈ �k} ∪ �∗Z�∗ ∪ �∗�k�∗,

whereZ is defined by (23). AsZ is finite, apparentlyQL is regular and the problem is
decidable.

• For strictly (L), Q = QL ∪ ⋃
1� i<k �i , a regular language, hence the problem is

decidable again. �

The following theorem is a counterpart of Theorem5.9 for the case of strictly bond-free
properties.

Theorem 7.8. LetP be a bond-free property andM ⊆ �+ a set of words. LetL ⊆ M be
a language satisfyingP. Denote

L1 = M ∩ (Kc
2�· l

PL)c ∩ ((Kc
2�· l

PL)c�· r
PKc

2)
c,

L2 = M ∩ (L�· r
PKc

2)
c ∩ (Kc

2�· l
P (L�· r

PKc
2)

c)c.

ThenL ⊆ Li ⊆ M andP(Li) = true, for i = 1,2.

Again, given a languageL satisfying a certain strictly bond-free property, the above the-
orem allows us to construct “larger” languages satisfying the same property and containing
L. Its proof follows by Proposition 6.3 in[13].

8. Summary

Westudied a list ofDNA languagepropertieswhich prevent undesired bondsbetween two
distinct DNA strands. We characterized both their strict and non-strict versions by uniform
language inequations. This approach allows one to study these properties in an unified way,
and toanswer certain important questions related to theconstructionof librariesofmolecules
for DNA computing and experiments. In this paper we focused on questionswhether a given
DNA language is free of bonds of specified types, and whether it is maximal w.r.t. this
property. Together with non-trivial recent results about solutions of language inequations
[13], we showed the existence of algorithms answering these questions for the majority of
the studied properties.
Applications of the above described approach are summarized in Tables 1 and 2. The

abbreviationsREGandCF denote the classes of regular and context-free languages, re-
spectively. In the column�, the symbol A denotes antimorphism and M denotes morphism,
∗ stands for an arbitrary involution. In the columns corresponding to particular properties
(B)–(M), D stands for decidable, P for the existence of a polynomial-time algorithm, U for
undecidable and ? for an open problem. The dash ‘—’denotes an impossible combination of
parameters. Besides the results in Table 1, we also presented a polynomial-time algorithm
deciding maximality of afiniteDNA language with respect to the property (B).
We hope that the described approach will prove useful also in further study of the proper-

ties of DNA languages. Among major open questions we mention study of fast algorithms
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Table 1
Decision problems of non-strict DNA language properties

Problem Class � Properties

B C D G H I J L M

Does a given language REG ∗ P P P P P P P P P
satisfy the propertyP? CF ∗ U ? ? ? ? ? ? ? ?
Is a given language REG A D D D D ? ? ? D —
maximal w.r.tP? REG M D D D ? D D ? D ?

Table 2
Decision problems of strict DNA language properties

Problem Class � Properties

A B C D G H I J L

Does a given language REG ∗ P P P P P P P P P
satisfy the propertyP? CF ∗ U ? ? ? ? ? ? ? ?
Is a given language REG A P D D D D ? ? ? D
maximal w.r.tP? REG M P D D D ? D D ? D

for construction of finite languages, methods preventing imperfect bonds between DNA
strands (i.e., with certain errors due to the Watson–Crick complementarity principle), and
study of influence of the secondary DNA structure and free energy of single strands. Some
of these questions are subject to recent research.
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